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A recursively defined sequence (xk)∞k=m is defined by giving an initial value xm = a and then
giving a formula for how to compute xn+1 given that xn has been computed. For example,
if m = 0, a = 1, and if xn+1 = xn · (n + 1) once xn has been computed, then

x0 = 1
x1 = x0 · (0 + 1) = 1 · 1 = 1
x2 = x1 · (1 + 1) = 1 · 2 = 2
x3 = x2 · (2 + 1) = 1 · 2 · 3 = 6
x4 = x3 · (3 + 1) = 1 · 2 · 3 · 4 = 24.

You are probably familiar with the definition of k! = 1 · 2 · · · (k − 1) · k. The recursively
defined sequence above gives a way to define k! without resorting to the mathematically
vague ‘· · · ’.
The purpose of this document is to give a rigorous justification of the construction of re-
cursively defined sequences. We have the following standing assumptions:

• X is a set of possible sequence values (e.g. X = Z for an integer-valued sequence),

• m ∈ Z, which will be the initial index of the sequence,

• a ∈ X, which will be the initial value of the sequence, and

• f : Z≥m × X → X is the defining function for the sequence.

We want to build an X-valued sequence (xk)∞k=m such that

(i) xm = a

(ii) xn+1 = f (n, xn) for all n ∈ Z≥m.

Notice that the function f plays the role of the ‘formula’ for defining the next term of
the sequence given that the previous term has been computed. In the factorial example,
f (n, y) = y · (n + 1).

The bulk of the work for building the infinite sequence is to build some finite recursively
defined sequences. For the factorial example one could build by hand the following finite
sequences: (1), (1, 1), (1, 1, 2), (1, 1, 2, 6), (1, 1, 2, 6, 24). Each of these finite sequences
satisfies the initial condition (i) and the recursion condition (ii), except that the recursion
condition holds only for a finite number of indices. We will call such a sequence an initial
matching sequence. More formally, if n ∈ Z≥m, and (yk)n

k=m is a finite sequence, we say that
it is an initial matching sequence to index n if

(i) ym = a

(ii) yk+1 = f (k, yk) for all k ∈ Z such that m ≤ k ≤ n − 1.
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Note that for an initial matching sequence, the recursion condition (ii) holds for all indices
beyond the first one, but there are only finitely many such indices.

Using mathematical induction we now show that we can always build an initial matching
sequence of whatever length we please.

Proposition R1: For each n ∈ Z≥m there exists an initial matching sequence to index n.

Proof. We proceed by induction on n ≥ m. Note that the sequence with one value ym = a
is an initial matching sequence to index m. This establishes the base case.

Suppose for some n ∈ Z≥m that (yk)n
k=m is an initial matching sequence to index n. Define

zk =

yk m ≤ k ≤ n
f (n, yn) k = n + 1.

We claim that (zk)n+1
k=m is a matching sequence to index n + 1. To do this we must show that

(i) zm = a

(ii) zk+1 = f (k, zk) for all k ∈ Z such that m ≤ k ≤ (n + 1) − 1 (i.e. m ≤ k ≤ n).

Note that zm = ym = a, so condition (i) is satisfied. Suppose that k ∈ Z and m ≤ k ≤ n.
Then either m ≤ k ≤ n − 1 or k = n. If m ≤ k ≤ n − 1 then m ≤ k < k + 1 ≤ n and hence
zk+1 = yk+1 and zk = yk. Moreover, since (yk)n

k=1 is an initial matching sequence,

zk+1 = yk+1 = f (k, yk) = f (k, zk).

Hence the recursion condition (ii) hold for m ≤ k ≤ n − 1. However,

zn+1 = f (n, yn) = f (n, zn)

by the definition of (zk)n+1
k=m. So the recursion condition (ii) also holds when k = n. Thus

(zk)n
k=m is an initial matching sequence to index n + 1. �

At this stage we know that we can always build a matching sequence up to any index we
want. It is intuitively clear that there is only one way to build an initial matching sequence
to a given length. The key tool to show this rigorously is the Well Ordering Principle (which
was itself a consequence of the Induction Axiom). Here’s the proof.

Proposition R2: Suppose for some n ∈ Z≥m that (yk)n
k=m and (ŷk)n

k=m are matching se-
quences to index n. Then yk = ŷk for all m ≤ k ≤ n.

Proof. Let A = {k ∈ Z : m ≤ k ≤ n and yk , ŷk}. The proposition is proved if we can show
that A is empty. Suppose to the contrary that A is not empty. Since it is bounded below by
m, Proposition 2.33 implies that A has a least element r. Note that r , m since ym = a = ŷm.
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Hence m < r ≤ n. Let s = r − 1, so m ≤ s ≤ n − 1. Since both sequences are initial
matching sequences,

ys+1 = f (s, ys) and
ŷs+1 = f (s, ŷs).

Since s < r, s < A and hence ys = ŷs. So

ys+1 = f (s, ys) = f (s, ŷs) = ŷs+1.

That is, yr = ŷr. But r ∈ A, so yr , ŷr. This is a contradiction. �

Combining Propositions R1 and R2 we obtain the following

Proposition R3: For every n ∈ Z≥m there exists exactly one initial matching sequence up
to index n.

We will denote the (unique) matching sequence up to index n by
(
yn

k

)n
k=m

. Note that the
raised index is a label, not an exponent. For the factorial example,

(y0
k)0

k=0 = (y0
0) = (1)

(y1
k)1

k=0 = (y1
0, y

1
1) = (1, 1)

(y2
k)2

k=0 = (y2
0, y

2
1, y

2
2) = (1, 1, 2)

(y3
k)3

k=0 = (y3
0, y

3
1, y

3
2, y

3
3) = (1, 1, 2, 6)

and so forth. Observe that given two of these sequences, the short sequence agrees with the
long sequence for all of its entries. The following proposition shows that this is always the
case.

Proposition R4: If p and q are integers such that m ≤ p ≤ q then

yp
k = yq

k

for all integers k such that m ≤ k ≤ p.

Proof. Consider (yq
k)p

k=m, which is the long sequence (yq
k)q

k=m truncated to the length of the
short sequence (yp

k )p
k=m. If we can show that (yq

k)p
k=m is an initial matching sequence up to

index p, then Proposition R3 will imply that yq
k = yp

k for all m ≤ k ≤ q.

Note that yq
m = m. Moreover, suppose that m ≤ k ≤ p − 1. Then m ≤ k ≤ q − 1 as well and

hence, since (yq
k)q

k=m is an initial matching sequence to index q,

yq
k+1 = f (k, yq

k).

This proves that (yq
k)p

k=m is an initial matching sequence to index p. �
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We now have all the ingredients required to justify the construction of recursively defined
sequences.

Theorem R5 (Principle of Recursive Definition): Let X be a set and suppose m ∈ Z.
Given a function f : Z≥m×X → X and an initial value a ∈ X there exists a unique X-valued
sequence (xk)∞k=1 such that

(i) xm = a

(ii) xn+1 = f (n, xn) for all n ∈ Z≥m.

Proof. We define a sequence xk = yk
k, so xk is the last value of the initial matching sequence

up to index k. Note that xm = ym
m = a. Now consider some n ∈ Z≥m. Then

xn+1 = yn+1
n+1 = f (n, yn+1

n )

by the definition of xn+1 and since (y(n+1)
k )n+1

k=m is an initial matching sequence. But yn+1
n = yn

n
by Lemma R4 and yn

n = xn by the definition of xn. Hence

xn+1 = f (n, xn).

Thus the sequence (xk)∞k=m satisfies conditions (i) and (ii). This proves existence.

Now consider two such sequences (xk)∞k=m and (x̂k)∞k=m. Let n ∈ Z≥m. Observe that (xk)n
k=m

and (x̂k)n
k=m are both initial matching sequences up to index n. By Proposition R2 they are

the same, and in particular xn = x̂n. Hence for all n ∈ Z≥m, xn = x̂n and the sequences are
the same. �
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