Proposition 2.7(iii): Let $m, n, p, q \in \mathbb{Z}$. If 0 < m < n and 0 then <math>mp < nq.

Proof. Your proof goes here.

Proposition 2.11: Let $m \in \mathbb{N}$ and $n \in \mathbb{Z}$. If $mn \in \mathbb{N}$ then $n \in \mathbb{N}$.

Proof. Your proof goes here.

Proposition 2.12(i): If $m, n \in \mathbb{Z}$, then

$$-m < -n$$

if and only if

m > n.

Proof. Your proof goes here.

Proposition 2.12(iv): Let *m*, *n*, and $p \in \mathbb{Z}$. If $m \le n$ and $0 \le p$, then $mp \le np$.

Proof. Your proof goes here.

Proposition 2.20: For all $k \in \mathbb{N}, k \ge 1$.

Proof. Your proof goes here.

Proposition 2.A: The integer 1 is not divisible by 2. That is, $2 \nmid 1$.

Proof. Your proof goes here.

Proposition 2.B: Let $A = \{3x - 1 : x \in \mathbb{Z}\}$ and let $B = \{3x + 8 : x \in \mathbb{Z}\}$. Then A = B.

Proof. Your proof goes here. This proposition is admittedly not very interesting; I have assigned so you can practice showing that two sets are the same. Follow the template from our proof in class of Proposition 2.13. \Box