$e(m \cdot n) = e(m) \cdot e(n).$

April 20, 2012

Proof. Your proof goes here. Attempt maximal laziness.

Proposition 9.19: If $n, m \in \mathbb{Z}$ then

n < m if and only if e(n) < e(m).

Proof. For full credit, you must be maximally lazy. Use Lemma 9.E proved in class, and use a string of if and only ifs.

Proposition 11.3: If $x, y, z \in \mathbb{R}$ with $y \neq 0$ and $z \neq 0$, then

$$\frac{xz}{yz} = \frac{x}{y}.$$

Proof. Your proof goes here.

Lemma 11.A: Suppose $a, b \in \mathbb{Z}$ and $b \neq 0$. Let g = gcd(a, b), so $g \in \mathbb{N}$, $g \mid a$ and $g \mid b$. Then

$$gcd\left(\frac{a}{g},\frac{b}{g}\right) = 1.$$

Proof. Recall that if $c \mid d$, and $c \neq 0$, then $\frac{c}{d}$ is the unique integer j such that c = jd.

Feel free to use Proposition 6.30; I'll give a proof in class.

Proposition 11.4: Let $x \in \mathbb{Q}$. Then there exist integers *a* and *b* such that b > 0, gcd(a, b) = 1, and x = a/b.

Proof. The proof is not long if you take advantage of Proposition 11.3 and Lemma 11.A. Ignore the hint in the book; it will likely lead to a hand-wavy proof.

The following proposition might take you some work. Please start on it now. It will not be due until the next week, however.

Proposition 9.G: Suppose $f : \mathbb{Z} \to \mathbb{R}$ and that for all $n, m \in \mathbb{Z}$, f(n + m) = f(n) + f(m) and $f(n \cdot m) = f(n) \cdot f(m)$. Then either $f(n) = 0_{\mathbb{R}}$ for all $n \in \mathbb{Z}$ or f = e.

Proof. Your proof here. Hint: either $f(1_{\mathbb{Z}}) = 0_{\mathbb{R}}$ or not.

In chapter 9 we constructed a function e from \mathbb{Z} to \mathbb{R} that obeyed nice rules with respect to arithmetic. The point of proposition 9.G is that there was only one good way to do this.