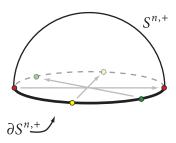
- Suppose X is a second countable space. Let {U_α}_{α∈I} be a collection of open sets in X such that ∪_αU_α = X. (We call {U_α}_{α∈I} an *open cover* of X.) Prove that there exists a countable sub-collection {U_{αi}} such that ∪_iU_{αi} = X. (We say that every open cover of a second countable space has a countable subcover).
- **2.** Suppose π is a quotient map from a second countable space *X* to a locally Euclidean space *Y*. Prove that *Y* is second countable. *Hint:* Problem **1** might be handy.
- **3.** (The Characteristic Property of the Quotient Topology is characteristic.) Suppose π : $X \rightarrow Y$ is a surjective function. Suppose that for any topological space *Z* that a function $f : Y \rightarrow Z$ is continuous if and only if $f \circ \pi$ is. Show that *Y* has the quotient topology induced by π .

- **4.** Show that the upper half sphere $S^{n,+}$ with antipodal points on $\partial S^{n,+}$ identified is homeomorphic to \mathbb{RP}^n .
- 5. Show that \mathbb{RP}^n is an *n*-manifold. You are free to use any facts we have proved in class or on the homeworks in your proof. There are several approaches to this problem; try to find the shortest proof you can.



- 6. Munkres 22.4: No rigor, please!
- **7.** Munkres 19.7

Gluing a half sphere.