- 1. Show that if *X* is a first countable space, and if convergent sequences in *X* have unique limits, then *X* is Hausdorff.
- **2.** Let X, Y, and Z be topological spaces. Show that $(X \times Y) \times Z$ is homeomorphic to $X \times Y \times Z$.
- **3.** Show that the product of an *n*-manifold *N* and an *m*-manifold *M* is an n + m manifold.
- 4. Munkres 17.13
- 5. Munkres 17.9
- **6.** Show that a topological space is a 0-manifold if and only if it is at most countable and has the discrete topology.
- 7. A set $A \subseteq X$ is said to be *dense* in X if $\overline{A} = X$. A topological space is *second countable* if it admits a countable basis.
 - a) Suppose *X* is second countable. Prove that it has a countable dense subset.
 - b) Prove that a metric space is second countable if and only if it has a countable dense subset.
- **8.** Let $\pi : X \to Y$ be a surjective continuous map. Show that π is a quotient map if and only if it takes saturated closed sets to saturated closed sets.
- **9.** Let $\pi : X \to Y$ be a quotient map. Show that if A is a saturated open set or a saturated closed set, then $\pi|_A : A \to \pi(A)$ is a quotient map.
- 10. 22.3
- 11. Let X be the line with two zeros. That is, X is the quotient space of $\{0,1\} \times \mathbb{R}$ given by the equivalence relation $(0, x) \sim (1, x)$ if $x \neq 0$. Show that X is locally Euclidean and second countable, but not Hausdorff.