- **1.** Munkres 18.1
- **2.** Munkres 18.3
- 3. Munkres 18.7
- **4.** Let Y_d be a topological space with the discrete topology. What are the continuous maps are from \mathbb{R} to X_d ? From $\mathbb{R} \{0\}$ to X_d ? Prove your claims.
- 5. If $f : X \to Y$ is a map between topological spaces, we say that f is **open** if f(U) is open for every open set in X. Suppose $f : X \to Y$ is an open continuous map.
 - a) Show that f is a homeomorphism if and only if f is bijective.
 - b) Show that if f is surjective, and if \mathcal{B} is a basis for X, then the collection $\{f(B) : B \in \mathcal{B}\}$ is a basis for Y.
 - c) Find a map from a subset of \mathbb{R}^2 to a subset of \mathbb{R}^2 that is open but not continuous.
- **6.** Let $f : X \to Y$ be continuous and let \mathcal{B} be a basis for X. Let $f(\mathcal{B})$ denote the collection $\{f(\mathcal{B}) : \mathcal{B} \in \mathcal{B}\}$. If f is surjective and open, prove that $f(\mathcal{B})$ is a basis for Y.
- 7. Munkres 18.9