For this assignment, feel free to use Maple to help you out with any problem you like. Procedures you've written in the past should be helpful.

- 1. Consider the cone $\mathbf{x}(u, v) = (u \cos(v), u \sin(v), u)$.
 - a) Compute its first fundamental form (i.e. the matrix of *I* with respect to the basis $\mathbf{x}_{u}, \mathbf{x}_{v}$).
 - b) Consider the curve given by $(u(t), v(t)) = (e^{\lambda t}, t)$ where λ is a constant. Find the length of this curve for $0 \le t \le \pi$.
 - c) Use Maple to plot this surface and this curve on the surface with $\lambda = 1$.
- 2. Consider the chart $\mathbf{x}(u, v) = (u, v, u^2 + v^2)$. Compute its second fundamental form (i.e. the matrix of *II* with respect to the basis $\mathbf{x}_u, \mathbf{x}_v$.)
- 3. Suppose that x is a surface chart with $II(\mathbf{v}, \mathbf{w}) = 0$ for all tangent vectors v and w at each point of the surface. Prove that the surface patch is contained in a plane.
- **4.** Assume that a surface *M* satisfies $|k_1| \le 1$ and $|k_2| \le 1$ everywhere. Is it true that the curvature κ of a curve in *M* satisfies $\kappa \le 1$ everywhere?
- 5. Write a procedure in Maple that will compute the principal curvatures and principal vectors of a surface chart **x**. Use your procedure to compute the principal curvatures of the following charts.
 - a) The helicoid: $\mathbf{x}(u, v) = (v \cos u, v \sin u, bu)$
 - b) The catenoid: $\mathbf{x}(u, v) = (\cosh u \cos v, \sin v, u \cos v)$

6. Oprea 2.4.4