1. Consider the maps $\mathbf{x}(u, v) = (u, v, \sqrt{1 - u^2 - v^2})$ and $\mathbf{y}(a, b) = (a, \sqrt{1 - a^2 - b^2}, b)$ which are charts into the sphere both having the domain (the open unit ball in \mathbb{R}^2).

We discussed in class the transition function of two charts is $\mathbf{y}^{-1} \circ \mathbf{x}$. Let $\tau = \mathbf{y}^{-1} \circ \mathbf{x}$, let *V* be its domain, let *W* be $\mathbf{x}(W)$, and let $Z = \tau(W)$.

For the two charts in this problem, explicitly compute what τ , V, W, and Z are. Verify that $\tau : V \to Z$ is a smooth function.

2. For each of the following surface patches, compute the equation of the tangent plane at the given point.

a)
$$\mathbf{x}(u,v) = (u,v,u^2 - v^2), (1,1,0)$$

b)
$$\mathbf{x}(r, \theta) = (r \cosh \theta, r \sinh \theta, r^2), (1, 0, 1)$$

3. Consider the helicoid $\mathbf{x}(u, v) = (v \cos u, v \sin u, bu)$ where *b* is constant. Let $p = \mathbf{x}(u, v)$ be a point on the surface, and let *U* be the unit normal there.

Compute U(u, v). Show that the angle between U(u, v) and the *z*-axis is proportional to distance between *p* and the *z*-axis.

- 4. Oprea 2.2.5
- 5. Oprea 2.2.8