Note: This is a shorter than usual homework! You will be receiving a take-home midterm on Wednesday, so you will want to get a head start on the current homework this weekend.

- **1.** Suppose $f : A \to \mathbb{R}$, $c \in A$, and c is a limit point of both $A \cap (c, \infty)$ and $A \cap (-\infty, c)$. Prove that $\lim_{x\to c} f(x)$ exists and equals L if and only if $\lim_{x\to c^+} f(x)$ and $\lim_{x\to c^-} f(x)$ both exist and are equal to L.
- **2.** 4.6.4
- **3.** 4.5.4 (*Hint:* What happens when a monotone increasing function is discontinuous?)
- **4.** 4.4.2
- **5.** Suppose $f : A \to \mathbb{R}$ is uniformly continuous. Prove that f takes Cauchy sequences to Cauchy sequences. Also, find a function $f : (0,1] \to \mathbb{R}$ that is continuous but does not take always take Cauchy sequences to Cauchy sequences.