Math F641: Homework 9 Due: November 14, 2007

1. Show that $\mathcal{R}[a,b]$ is closed in B[a,b] and that integration is continuous on $\mathcal{R}[a,b]$. (That is, show that the map taking f to $\int_a^b f$ is continuous.)

- **2.** Let Δ be the standard Cantor set. Determine if χ_{Δ} is Riemann integrable.
- **3.** Let $l : \mathcal{P}(\mathbb{R}) \to [0, \infty]$, and suppose l is monotone. Prove that l is finitely additive and countably subadditive if and only if it is countably additive.
- 4. Carothers 16.3 *Hint*: Take advantage of Proposition 16.4.
- 5. Carothers 16.4
- **6.** Carothers 16.12
- 7. Carothers 16.16
- 8. Carothers 16.24 (A subset of \mathbb{R} is a G_{δ} set if it is a countable intersection of open sets.) Also, determine if your proof allows you to conclude that $m^*(U \setminus E) = 0$.
- **9.** Carothers 16.25
- 10. Carothers 16.28