- **1.** Abbott 7.2.1
- 2. Abbott 7.2.4a
- **3.** Suppose $f, g : [a, b] \to \mathbb{R}$ are bounded functions. Suppose also that g(x) = f(x) for all x except at one point $c \in [a, b]$.
 - a) Prove that U(f) = U(g) and L(f) = L(g).
 - b) Prove that if f is integrable, so is g.
 - c) Suppose h is an integrable function and $\hat{h}(x) = h(x)$ except at finitely many points. Show that \hat{h} is integrable.
- 4. Abbott 7.2.6
- 5. Abbott 7.4.1
- 6. Abbott 7.4.5
- 7. Abbott 7.2.5 (Hand this one in to David.)

For this problem, you will need to know the definition of **uniform convergence**. We say a sequence of functions (f_n) with domain [a, b] converges uniformly to f if for any $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that if $n \ge N$ then $|f(x) - f_n(x)| < \epsilon$ for every $x \in [a, b]$.