First, some notation that you might find useful.

Let *P* and *Q* be points in the plane, let \mathcal{L}_{PQ} be the equidistant line between them. Given a line \mathcal{L} , let $R_{\mathcal{L}}$ be the reflection about \mathcal{L} . Finally, let R_{PQ} be the reflection about \mathcal{L}_{PQ} .

In the following we will consider an isometry *F* and three non-colinear points *A*, *B*, *C*. Let $\hat{A} = F(A)$, $\hat{B} = F(B)$, and $\hat{C} = F(C)$.

- **1.** What is $R_{PQ}(P)$?
- **2.** Find a reflection R_1 that takes *A* to \hat{A} . Consider both the case $A = \hat{A}$ and the case $A \neq \hat{A}$.
- **3.** Explain why \hat{B} and $R_1(B)$ lie on a circle centered at \hat{A} .
- **4.** Find a reflection R_2 taking $R_1(B)$ to \hat{B} . There are two cases.
- 5. What is $R_2(\hat{A})$? Why?
- **6.** Explain why \hat{C} and $R_2(R_1(C))$ are on a circle centered at \hat{B} , and are also on a circle centered at \hat{A} .
- **7.** Find a reflection R_3 taking $R_2(R_1(C))$ to \hat{C} . There are two cases.
- **8.** What is $R_3(\hat{A})$? What is $R_3(\hat{B})$?
- **9.** Let $G = R_3 \circ R_2 \circ R_1$. How are *G* and *F* related? Why?
- **10.** Find reflections R_1 and R_2 such that $R_2 \circ R_1$ is a translation of distance 2 along the *x*-axis.