- **1.** Let \mathcal{L}_1 be the line x = 1. Let \mathcal{L}_2 be the line x = k, where $k \neq 0$. If you project \mathcal{L}_1 onto \mathcal{L}_2 through the origin, the point (1, z) on \mathcal{L}_1 will be taken to a point $(k, f_k(z) \text{ on } \mathcal{L}_2$. Determine the function $f_k(z)$.
- **2.** In the previous projection, where does the point at ∞ on \mathcal{L}_1 get taken to?
- **3.** Let \mathcal{L}_1 be the line x = 1. Let \mathcal{L}_2 be the line y = 1. If you project \mathcal{L}_1 onto \mathcal{L}_2 through the origin, the point (1, z) on \mathcal{L}_1 will be taken to a point (g(z), 1) on \mathcal{L}_2 . Determine the function g(z).
- 4. In the previous projection, where does the point at ∞ on \mathcal{L}_1 get taken to? What gets taken to the point at ∞ on \mathcal{L}_2 ? Explain you answer both in terms of algebra and in terms of geometry.
- 5. Let \mathcal{L}_1 be the line x = 1. Let \mathcal{L}_2 be the line x = 2. Imagine projecting \mathcal{L}_1 onto \mathcal{L}_2 from a point at infinity in the direction (1, d). The point (1, z) on \mathcal{L}_1 will be taken to a point $(2, h_d(z))$ on \mathcal{L}_2 . Determine the function $h_d(z)$.
- **6.** In the previous projection, where does the point at ∞ on \mathcal{L}_1 get taken to?
- 7. What is the most general function you can make composing functions of the form f_k and h_d (as often as you like)?
- **8.** What do the functions of your previous answer do to the point at ∞ ?
- **9.** What is the most general function you can make composing functions of the form f_k , h_d , and g (as often as you like)? It can be shown that every projection from a line to another can be written in this form.
- 10. Consider a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. It defines a map from \mathbb{R}^2 to itself by matrix multiplication. Explain how you can also think about this as defining a map from \mathbb{RP}^1 to itself.
- 11. Find two different matrices that represent the same map from \mathbb{RP}^1 to itself. Can you conjecture when $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ represent the same map?
- 12. What is the general form of a matrix that sends the point with homogeneous coordinates (0,1) to itself?
- 13. What is the general form of a matrix that leaves both the points with homogeneous coordinates (0,1) and (1,0) fixed?
- 14. What is the general form of a matrix that leaves the points with homogeneous coordinates (0,1), (1,0),and (1,1) fixed?

- 15. One way to understand the action of a map on \mathbb{RP}^1 is by using **inhomogeneous** coordinates. The inhomogeneous coordinate of the point (x, y) is the number y/x. Explain why points in \mathbb{RP}^1 with homogeneous coordinates (x, y) and (x', y') have the same inhomogeneous coordinates if and only if they represent the same point in \mathbb{RP}^1 .
- 16. What points of \mathbb{RP}^1 can be represented using inhomogeneous coordinates?
- 17. What are the inhomogeneous coordinates of the points on the line x = 1?
- 18. Given a point with inhomogeneous coordinates *z*, what is the image of *z* (in inhomogeneous coordinates) under the map defined by the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$?
- **19.** Represent each of the functions f_k , g, and h_d in matrix form.