- 1. Let \mathcal{L} be the line given by ax + by + c = 0. Find (with proof) points *P* and *Q* such that \mathcal{L} is the line equidistant between *P* and *Q*.
- **2.** Find an explicit formula for the reflection about the line equidistant between the (distinct) points $P = (x_0, y_0)$ and $Q = (x_1, y_1)$.
- **3.** Stillwell 3.3.1
- 4. Stillwell 3.4.1
- 5. Stillwell 3.6.2
- 6. Stillwell 3.6.3
- 7. Stillwell 3.6.4 A picture is fine for this problem.
- 8. Stillwell 3.6.5

The wording of this problem is a little vague. Here's my interpretation of it. Let \mathcal{L} , \mathcal{M} , and \mathcal{N} be lines. Show that there exist lines \mathcal{L}' , \mathcal{M}' , and \mathcal{N} such that \mathcal{M}' is perpendicular to \mathcal{N} and such that reflection through \mathcal{L} , \mathcal{M} , and \mathcal{N} (in that order) is equivalent to reflection through \mathcal{L}' , \mathcal{M}' , and \mathcal{N} (in that order). You may assume that no two of \mathcal{L} , \mathcal{M} , and \mathcal{N} are parallel. A picture is fine for this problem.

- 9. Stillwell 3.6.6 A picture is fine for this problem.
- **10.** Stillwell 3.6.7