- 1. Let A, B and C be three points on a line such that A * B * C. Let E, F, and G be three other points on another line such that $\overline{EF} \simeq \overline{AB}$ and \overline{EG} is congruent to \overline{AC} . Prove that E * F * G and \overline{FG} is congruent to \overline{BC} .
- 2. Let \overline{AB} and \overline{CD} be line segments. We say

$$\overline{AB} < \overline{CD}$$

if there is a point E with C*E*D and \overline{AB} is congruent to \overline{CE} . (i.e. $\overline{AB} \simeq \overline{CE}$). We also say $\overline{AB} > \overline{CD}$ if $\overline{CD} < \overline{AB}$.

- a) Given line segments \overline{AB} and \overline{CD} , show that exactly one of the following is true: $\overline{AB} < \overline{CD}$, $\overline{AB} \simeq \overline{CD}$, $\overline{AB} > \overline{CD}$.
- b) Define the inside of a circle.
- 3. Stillwell 2.7.4
- 4. Stillwell 2.8.1
- 5. Stillwell 2.8.2
- **6.** Stillwell 2.8.3
- 7. Stillwell 3.2.4
- 8. Consider lines ax + by + c = 0 and a'x + b'y + c' = 0. Show that the lines are parallel if and only if there is a constant $\lambda \neq 0$ such that $(a, b) = (\lambda a', \lambda b')$. Show that the lines are the same line if and only if there is a constant $\lambda \neq 0$ such that $(a, b, c) = (\lambda a', \lambda b', \lambda c')$.