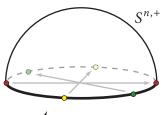
- 1. Let X Y be a quotient map. Show that if A is a saturated open set or a saturated closed set, then S_A A àAç is a quotient map.
- 2. (e Characteristic Property of the Quotient Topology is characteristic.) Suppose
 X Y is a surjective function. Suppose that for any topological space Z that a function
 f Y Z is continuous if and only if f X is. Show that Y has the quotient topology induced by . (Typeset this one.)

- 3. Let X be the line with two zeros. at is, X is the quotient space of $\partial 0$; 1ù \mathbb{R} given by the equivalence relation $\partial 0$; xç $\partial 1$; xç if x x 0. Show that X is locally Euclidean and second countable, but not Hausdor.
- 4. Suppose X is a second countable space. Let òU ù > be a collection of open sets in X such that 8 U X. (We call òU ù > an open cover of X.) Prove that there exists a countable sub-collection òU , ù such that 8, U, X. (We say that every open cover of a second countable space has a countable subcover).
- Use Problem 1 to show that the upper half sphere S^{n;} with antipodal points on 𝔅^{n;} identi ed is homeomorphic to ℝPⁿ.
- 6. Suppose is a quotient map from a second countable space X to a locally Euclidean space Y. Prove that Y is second countable. Hint: Problem 4 might be handy.
- (Munkres 17.7) Let R[™] be the set of real sequences that are eventually zero. What is the closure of R[™] in the product and box topologies of R[!] ?



Gluing a half sphere.