Math F608: Homework 4

1.

a. Let U be an open subset of \mathbb{C} and let $f : \mathbb{C} \to \mathbb{C}$ be analytic (i.e complex differentiable, or holomorphic). Show that the real and imaginary parts of f thought of as functions from \mathbb{R}^2 to \mathbb{R} are both harmonic functions.

b. Let U_{θ} be the domain $\{(r\cos(s), r\sin(s)) \in \mathbb{R}^2 : 0 < r < \infty, 0 < s < \theta\}$. For example, U_{π} is the upper half plane, and $U_{\pi/2}$ is the first quadrant. Find functions (not identically 0) u_{θ} that solve $\Delta u_{\theta} = 0$ in U_{θ}

$$\Delta u_{\theta} = 0 \quad \text{in } U_{\theta}$$
$$u_{\theta} = 0 \quad \text{on } \partial U_{\theta}.$$

Hint: For the domain $U_{\pi/2}$, is there an analytic function that takes $U_{\pi/2}$ to U_{π} ?

c. Discuss the smoothness of the functions you found in part **b**. at the point (0, 0).

2. Find a Greens function for the domain $U_{\pi/2}$. (Note that we are working in two dimensions, so the fundamental solution is $-1/\pi \ln(r)$.

3. Let U be a smooth domain, and let f be a continuous function on U. Suppose u is a solution of

$$-\Delta u = f \quad \text{in } U$$
$$\frac{\partial}{\partial \nu} u = 0 \quad \text{in } U.$$

Show that u is a minimum of the functional

$$I[w] = \int_U |Dw|^2 - fw$$

over the domain $\mathcal{B} = \{ w \in C^2(\overline{U}) \}.$

4. Evans 2.5.5

5. Evans 2.5.9

Howdy.