Math F608: Homework 11

1. This problem gives a way of computing Fourier transforms of some functions that are distributions but do not live in L^1 because they decay too slowly.

a. Suppose $f \in L^1_{loc}(\mathbb{R})$ and that there exist a constant N > 0 such that $(1+|x|)^{-N}f \in L^1(\mathbb{R})$. It is easy to see that such an f belongs to S'. Let L_n be any sequence of positive real numbers converging to infinity, and let χ_n be functions that are equal to 1 on $[-L_n, L_n]$, and are 0 elsewhere. Let g_n denote the Fourier transform of $\chi_n f$. Show that $g_n \to \hat{f}$ in S'.

b. Let $f \in L^1(\mathbb{R})$. We proved in class that \hat{f} is continuous, and we claimed that $\hat{f}(\xi)$ tends to 0 as $\xi \to \pm \infty$. Prove this claim. You may freely use the fact that S is dense in $L^1(\mathbb{R})$. *Hint:* If $u \in L^1$ and $v \in S$, and if $||u - v||_{L^1} < \epsilon$, what can be said about $||\hat{u} - \hat{v}||_{L^{\infty}}$? What space does \hat{v} belong to?

c. Let L_n be a sequence of positive real numbers converging to ∞ . Prove that the distributions $e^{-2\pi i L_n \xi}$ converge to 0 in S' as $n \to \infty$.

d. Use these ideas to compute the Fourier transform of sgn(x).

2.

a. Two norms $|| \cdot ||_1$ and $|| \cdot ||_2$ on a vector space X are called equivalent if there exist constants m and M such that for every x in X,

$$m||x||_1 \le ||x||_2 \le M||x||_1.$$

Show that on \mathbb{R}^n that the Euclidean norm defined by

$$||x|| = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2}$$

and the L^1 norm defined by

$$||x||_1 = \sum_{i=1}^n |x_i|_1$$

are equivalent.

b. Show that for any $k \in \mathbb{N}$, there exists constants c_1 and c_2 such that

$$c_1(1+|x|^k) \le (1+|x|^2)^{k/2} \le c_2(1+|x|^k).$$

c. Conclude that if $u \in L^2$, then $u \in H^k$ if an only if $\partial^{\alpha} u \in L^2$ for every α with $|\alpha| = k$.

3. Suppose $u \in H^s$. Show that if $|\alpha| = k$, then $\partial^{\alpha} u \in H^{s-k}$. Show also that $\partial^{\alpha} : H^s \to H^{s-k}$ is continuous.

4. Let $u : \mathbb{R}^2 \to \mathbb{R}$ be the function that is equal to 1 on the unit square and is equal to 0 otherwise. Which spaces H^s does u belong to?