1.

a. Let 1/x denote the Cauchy Principle Value distribution defined by

$$\langle 1/x, v \rangle = \lim_{\epsilon \to 0} \int_{-\infty, -\epsilon} \frac{v(x)}{x} \, dx + \int_{\epsilon, \infty} \frac{v(x)}{x} \, dx$$

a. Show that 1/x is well defined and is a distribution.

b. Prove that $\partial_x \ln(|x|) = 1/x$ in the sense of distributions. You may use the well known fact that $\ln(|x|) \in L^1_{loc}(\mathbb{R})$.

2. Show that $\langle F, v \rangle = \sum_{k=1}^{\infty} v^{(k)}(1/k)$ is a distribution on $(0, \infty)$ but not on \mathbb{R} .

3. Show that if xF = 0 for some distribution F, then $F = c\delta$ for some real number c. *Hint:* Try to write $v \in \mathcal{D}(\mathbb{R})$ as $v(0)\eta(x) + x\phi_v(x)$ for smooth functions ϕ_v and η , where η does not depend on v.

4. We say that a sequence of distributions $\{F_n\}$ in $\mathcal{D}'(U)$ converges (weakly) to F if for every $v \in \mathcal{D}(U)$, $\langle F_n, v \rangle \to \langle F, v \rangle$. Show that the step functions f_n that are equal to n on [0, 1/n] and are otherwise 0 converge to δ .

5. Consider the map $\tau_h : L^1_{loc}(\mathbb{R}) \to L^1_{loc}(\mathbb{R})$ given by

$$\tau_h(f)(x) = \frac{f(x+h) - f(x)}{h}$$

a. Give a definition of τ_h that extends it to a map from $\mathcal{D}'(\mathbb{R}) \to \mathcal{D}'(\mathbb{R})$.

b. Show that for any sequence $\{h_n\}$ converging to 0, and for any distribution F, that $\tau_{h_n}F$ converges to F'.

c. (Requires Functional Analysis) Suppose $f \in L^2(\mathbb{R})$ and $||\tau_h f||_{L^2(\mathbb{R})}$ is bounded above by M for every h. Prove that the distributional derivative of f is also an element of $L^2(\mathbb{R})$.