Math F401: Homework 7 Supplement

1. Determine (with proof) which of the following series converge.

$$\mathbf{a.} \quad \sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n}$$

b.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+3}}{n^2 - 2n + 12}$$

c.
$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$
 Hint: $3 = (\sqrt{3})^2$.

2. (Hand in to David)

We define a function $f:[0,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational} \\ 1/q & \text{if } x = p/q \text{ where } p \text{ and } q \text{ are relatively prime integers (i.e. } \gcd(p,q) = 1). \end{cases}$$

Due: October 20

So for example, f(1) = 1, f(1/2) = 1/2, $f(\pi/4) = 0$, f(17/29) = 1/29, and so forth.

- **a.** Make a sketch of the graph of the function f. Clearly you won't be able to do an exact job here, but try to convey the important features of the function.
- **b.** Prove that given $c \in [0,1]$ and $q \in \mathbb{N}$ there exists an $\epsilon > 0$ such that there are no points x of the form p/q such $0 < |x c| < \epsilon$.
- **c.** For what values of $c \in [0,1]$ does $\lim_{x\to c} f(x)$ exist? Prove your claim.