Math F401: Homework 11

1. State the definition of a Riemann integrable function $f : [a, b] \to \mathbb{R}$.

2. Consider the function f(x) = |x| on [-1, 1]. Let $\epsilon > 0$. Find (with proof) a partition \mathcal{P} such that

$$U(\mathcal{P}, f) - L(\mathcal{P}, f) < \epsilon.$$

3. Suppose $f : [a, b] \to \mathbb{R}$ is continuous and that $f(x) \ge 0$ for every $x \in [a, b]$. Show that if $\int_a^b f = 0$, then $f \equiv 0$. *Hint:* Use the contrapositive and compare with a suitable step function.

- **4.** Bartle & Sherbert 7.2.2
- 5. Bartle & Sherbert 7.2.10
- 6. Bartle & Sherbert 7.2.16

7. (Hand in to David) Let $f : [a, b] \to \mathbb{R}$ be Riemann integrable. Show that |f| is also Riemann integrable and $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b} |f|$. *Hint:* Use the characterization that a function is Riemann integrable if and only if for every $\epsilon > 0$ there is a partition \mathcal{P} with $U(\mathcal{P}, f) - L(\mathcal{P}, f) < \epsilon$.

8.

a. Define $f : [a, b] \to \mathbb{R}$ by f(x) = 0 except for $x = x_0 \in [a, b]$, where f(x) = 1. Show that f is Riemann integrable and that $\int_a^b f = 0$.

b. Let f be a Riemann integrable function on [a, b] and let g be a function on [a, b] that is equal to f everywhere except at finitely many points. Show that g is Riemann integrable and $\int_a^b g = \int_a^b f$.

9. (**Hand in to David**) Find an example of a Riemann integrable function that is discontinuous at infinitely many points.

10. Let $f : [a, b] \to \mathbb{R}$ be Riemann integrable. Show that f^2 is Riemann integrable.