There is the one non-book left over from last week. I’ve repeated it below. Come ask for hints if need be!

1.

a. Show that every connected manifold is path connected. **Hint:** Show it is locally path connected.

b. Show that if \(p, q \) are elements of the interior of the closed unit ball

\[
\mathbb{B}^n = \{ x \in \mathbb{R}^n : |x| \leq 1 \},
\]

then there is a homeomorphism \(\phi : \mathbb{B}^n \to \mathbb{B}^n \) such that \(\phi(p) = q \) and such that \(\phi(x) = x \) for every \(x \) with \(|x| = 1 \).

c. Show that the homeomorphism group of a connected manifold acts transitively. In other words, show that if \(M \) is a connected manifold, then for any two points \(p \) and \(q \) in \(M \) there is a homeomorphism \(\psi : M \to M \) such that \(\psi(p) = q \).