These problems from Munkres:

- Page 84 #8b
- Page 92 #7
- Page 111 #7a

As well as:

1.

The point of the following exercise is to show that it is easy to be a continuous map into a topological space with a coarse topology, or to be a continuous map from a space with a fine topology (and conversely harder to go the other way). Let X and Y be a topological spaces and let X' and Y' be the same point-sets but with finer topologies. Prove the following.

- 1 If $f: X \to Y'$ is continuous, then $X \to Y$ is continuous.
- 2 If $f: X \to Y$ is continuous, then $X' \to Y$ is continuous.
- 3 Give examples where the converses of 1) and 2) are false.
- 4 Let X_d be the set X with the discrete topology. Every function $f : X_d \to Y$ is continuous.
- 5 Let Y_i be the set Y with the indiscrete topology. Every function $f: X \to Y_i$ is continuous.
- 6 If Z is a Hausdorff space, the only continuous maps from $Y_i \rightarrow Z$ are the constants.
- 7 What are the continous maps are from \mathbb{R} to X_d ? From $\mathbb{R} \{0\}$ to X_d ?

2.

Let *I* be the interval (0,1). Let *X* be the set $I \times I$ with the topology inherited from \mathbb{R}^2 with the order topology, and let *Y* be the same set with the usual metric topology. Determine if either of the identity maps $X \to Y$ or $Y \to X$ are continuous.

3.

If $f : X \to Y$ is a map between topological spaces, we say that f is **open** if f(U) is open for every open set in X. Suppose $f : X \to Y$ is an open continuous map.

- 1 Show that f is a homeomorphism if and only if f is bijective.
- 2 Show that if f is surjective, and if \mathcal{B} is a basis for X, then the collection $\{f(B) : B \in \mathcal{B}\}$ is a basis for Y.
- 3 Find a map from \mathbb{R}^2 to \mathbb{R}^2 that is open but not continuous.