Math F651: Homework 13

2: Munkres 59.3.

3: The Brower fixed point theorem in dimension 2. Let \mathbb{B}^2 be the closed unit ball in \mathbb{R}^2 . Show that for any continuous function $F : \mathbb{B}^2 \to \mathbb{B}^2$, there is a point $x \in \mathbb{B}^2$ such that F(x) = x.

Hint: Suppose there is no fixed point and consider the map $G: S^1 \to S^1$ given by $G(x) = \frac{x - F(x)}{|x - F(x)|}$.

Show that G is homotopic to the identity map on S^1 and also that G is null homotopic to derive a contradiction. Note: Your book has a different, longer proof of this result. You might find Lemma 55.3 useful in your proof.

4.

a. Let X be a topological space and let $H: I \times I \to X$ be continuous. Define paths

$$f(t) = H(0, t) g(t) = H(t, 1) h(t) = H(t, 0) k(t) = H(1, t)$$

show that $f \cdot g \sim h \cdot k$.

b. Show that the fundamental group of any topological group G at any base point is abelian. *Hint:* Given loops α and β in G based at the idenity, consider the map $H: I \times I \to G$ defined by $H(s,t) = \alpha(s)\beta(t)$.

5. Let $d: \pi_1(S^1, 1) \to \mathbb{Z}$ be the isomorphism we defined in class given by

$$d([f]) = \tilde{f}(1)$$

where \tilde{f} is the lift of f such that $\tilde{f}(0) = 0$. For any map $F : S^1 \to S^1$ we define the **degree** of F via

$$\deg(F) = d(\hat{F}_*([\epsilon]))$$

where $\epsilon(t) = e^{2\pi i t}$ and where $\hat{F}(z) = F(z)/F(1)$.

a. Show that two maps F and G from S^1 to S^1 are homotopic if and only if they have the same degree.

b. Show that $\deg(F \circ G) = \deg(F) \deg(G)$ for maps F, G from S^1 to S^1 .

6. The Klein bottle is $\mathbb{R}^2/\mathbb{Z}^2$ where \mathbb{Z}^2 acts on \mathbb{R}^2 by $(n,m) \cdot (x,y) = (x+n,(-1)^n y + m)$. Find a two sheeted covering of the Klein bottle by the torus.