Prove the following proposition

Proposition 1. Let d_1 and d_2 be two metrics on a set X. The following condiditions are equivalent.

- 1. For every sequence $\{p_i\}_{i=1}^{\infty}$, if $p_i \xrightarrow{d_2} p$ then $p_i \xrightarrow{d_1} p$.
- 2. For every function $f : X \to \mathbb{R}$, if f is continuous with respect to d_1 then f is continuous with respect to d_2 .
- 3. For every set U, if U is open with respect to d_1 then U is open with respect to d_2 .

Hint: You might want to show 1) \iff 2) and 1) \iff 3).

It will be helpful to recall the following definitions and results from metric space theory. Let (X, d) be a metric space and let V be a subset of X. We say that p is a **limit point** of V if there is a sequence $\{p_i\}_{i=1}^{\infty}$ such that $p_i \in V$ and such that $p_i \to p$. We say that a set V is **closed** if and only if V contains its limit points. Finally, it is a result that a set V is closed if and only if its complement is open.