These problems from do Carmo:

• 2-5 #12

As well as:

1. Consider the patch

 $\sigma(u, v) = (\cosh(v)\cos(u), \cosh(v)\sin(u), v)$

for $0 < u < 2\pi$ that defines the catenoid with a line removed, and the patch

$$\hat{\sigma}(u,v) = (v\cos(u), v\sin(u), u)$$

for $0 < u < 2\pi$ that defines the portion of the helicoid between z = 0 and $z = 2\pi$.

- **a** Sketch both surfaces.
- **b** Show that the map taking $\sigma(u, v)$ to $\hat{\sigma}(u, \sinh(v))$ is an isometry.

2. Let S be the upper half cylinder defined by $S = \{(x, y, z) : x^2 + y^2 = 1, z > 0\}$. Let \hat{S} be the punctured unit ball:

$$\hat{S} = \{(x, y, z) : x^2 + y^2 < 1, z = 0, (x, y, z) \neq (0, 0, 0)\}.$$

Find a conformal map taking S to \hat{S} . Feel free to ask for hints if need be!

3. Let S be the one-sheeted hyperboloid defined by $x^2 + y^2 = 1 + z^2$. For each $z \in \mathbb{R}$, let

$$\alpha_z(t) = ((1+z^2)\cos(t), (1+z^2)\sin(t), z),$$

which is a curve in S. Compute the normal curvature and geodesic curvature of α_z .