1.

Recall that O(3) is the set of 3x3 orthogonal matrices and that SO(3) is the set of orthogonal matrices with determinent equal to 1.

a. Show that if v and w are vectors in \mathbb{R}^3 and A is any matrix, then $\langle Av, w \rangle = \langle v, A^T w \rangle$.

b. Show that if u, v, and w are vectors in \mathbb{R}^3 , and if A is any matrix, then det(Au, Av, Aw) = det(A) det(u, v, w).

c. Show that if $U \in SO(3)$ and u and v are vectors in \mathbb{R}^3 , then $(Uu) \wedge (Uv) = U(u \wedge v)$. *Hint:* Show that $U(u \wedge v)$ satisfies

$$\langle U(u \wedge v), w \rangle = \det(Uu, Uv, w)$$

for any vector w and use the definition of the vector product on page 12 of do Carmo.

2.

Suppose $\alpha(s)$ is a smooth curve with curvature k(s) > 0 and torsion $\tau(s)$ (parameterized by unit speed, for simplicity). If $U \in O(3)$ and $\det(U) = -1$, compute the curvature and torsion of the curve $\hat{\alpha}(t) = U\alpha(t)$.