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Abstract

We consider generalized graph coloring and several other extremal problems in graph

theory. In classical coloring theory, we color the vertices (resp. edges) of a graph requiring

only that no two adjacent vertices (resp. incident edges) receive the same color. Here we

consider both weakenings and strengthenings of those requirements. We also construct

twisted hypercubes of small radius and find the domination number of the Kneser graph

K(n, k) when n ≥ 3
4k2 + k if k is even, and when n ≥ 3

4k2 − k − 1
4 when k is odd.

The path chromatic number χP (G) of a graph G is the least number of colors with which

the vertices of G can be colored so that each color class induces a disjoint union of paths.

We answer some questions of Weaver and West [31] by characterizing cartesian products

of cycles with path chromatic number 2.

We show that if G is a toroidal graph, then for any non-contractible chordless cycle C

of G, there is a 3-coloring of the vertices of G so that each color class except one induces

a disjoint union of paths, while the third color class induces a disjoint union of paths and

the cycle C.

The path list chromatic number of a graph, χ̂P (G), is the minimum k for which, given

any assignment of lists of size k to each vertex, G can be colored by assigning each vertex a

color from its list so that each color class induces a disjoint union of paths. We strengthen

the theorem of Poh [24] and Goddard [11] that χP (G) ≤ 3 for each planar graph G by

proving also that χ̂P (G) ≤ 3.

The observability of a graph G is least number of colors in a proper edge-coloring of G

such that the color sets at vertices of G (sets of colors of their incident edges) are pairwise

distinct. We introduce a generalization of observability. A graph G has a set-balanced
iii



k-edge-coloring if the edges of G can be properly colored with k colors so that, for each

degree, the color sets at vertices of that degree occur with multiplicities differing by at

most one. We determine the values of k such that G has a set-balanced k-edge-coloring

whenever G is a wheel, clique, path, cycle, or complete equipartite multipartite graph. We

prove that certain 2-regular graphs with n vertices have observability achieving the trivial

lower bound min{j :
(

j
2

) ≥ n}. Horňák conjectured that this is always so.

The spot-chromatic number of a graph, χS(G), is the least number of colors with which

the vertices of G can be colored so that each color class induces a disjoint union of cliques.

We generalize a construction of Jacobson to show that χS(Kmt Knt) ≤ mnt
m+n +2 min(m,n)

whenever m + n divides t. The construction is nearly optimal.

Twisted hypercubes, generalizing the usual notion of hypercube, are defined recursively.

Let G0 = {K1}. For k ≥ 1, the family Gk of twisted hypercubes of dimension k is the set

of graphs constructible by adding a matching joining two graphs in Gk−1. We construct a

family of twisted hypercubes of small diameter. In particular, we prove that the order of

growth of the minimum diameter among twisted hypercubes of dimension k is Θ(k/ lg k).

The domination number γ(G) of a graph G is the minimum size of a set S such that

every vertex of G is in S or is adjacent to some vertex in S. The Kneser graph K(n, k)

has as vertices the k-subsets of [n]. Two vertices of K(n, k) are adjacent if the k-subsets

are disjoint. We determine γ(K(n, k)) when n ≥ 3
4k2 ± k depending on the parity of k.
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1. Introduction

Extremal graph problems often involve finding the extreme value of a parameter over

some class of graphs. Here we study several such problems involving generalized coloring

parameters, diameter, and domination number. We include algorithms to produce gener-

alized colorings of planar and toroidal graphs and constructions for parameters on specific

graphs that we prove are optimal or nearly optimal.

1.1. Generalized graph coloring

Classical coloring theory can be viewed as modeling conflict avoidance. The edges of

a graph represent conflicts among the vertices, and we seek a partition of vertices into

conflict-free classes. We do this by assigning labels called colors, requiring only that no

two adjacent vertices receive the same color. If this can be done with k colors, then we

say that the graph is k-colorable. The minimum number of colors required to color the

vertices of a graph G in this way is the chromatic number, χ(G).

We can also color the edges of a graph. In classical coloring theory, we require only that

no two incident edges receive the same color, that is, that each color class is a matching. A

graph is k-edge-colorable if it can be colored in this way with k colors. The edge-chromatic

number, χ′(G), is the minimum k such that G is k-edge-colorable.

Generalizations of graph coloring consider both weakenings and strengthenings of these

requirements. When weakening the requirement for vertex coloring, we usually define

a graph property or graph family Q and let χQ(G) be the minimum number of colors

required to color the vertices of G so that the subgraph induced by each color class has

property Q or belongs to family Q. Such a coloring using i colors is a Q i-coloring. (In
1



the ordinary or generalized setting, an i-coloring is an arbitrary labeling of the vertices

from a set of i colors. In ordinary coloring we prepend the word “proper” to impose the

desired constraint; in generalized coloring we prepend the designation of the property.)

In this dissertation we consider the properties P = {H : H is a disjoint union of paths},

Pk = {H : H is a disjoint union of paths each having no more than k vertices} and

S = {H : H is a disjoint union of cliques}. If all graphs with property Q have property

Q′, then χQ(G) ≥ χQ′(G), since every Q i-coloring of G is also a Q′ i-coloring of G. Thus

χP (G) ≤ · · · ≤ χP3(G) ≤ χP2(G) ≤ χP1(G) = χ(G) and χS(G) ≤ χ(G).

One way to strengthen the vertex coloring requirement is list coloring. When list coloring

a graph, we must choose the color for each vertex from a list specified for that vertex. A

graph is k-choosable if it is properly colorable in this manner whenever the lists chosen for

the vertices have size k. The list chromatic number of a graph, χ̂(G), is the minimum k

such that G is k-choosable. Determining whether χ(G) ≤ k is equivalent to the specific

instance of list coloring where each vertex is given the list {1, 2, . . . , k}; thus χ(G) ≤ χ̂(G).

List coloring is often used to model coloring problems where some vertices have been

pre-colored. We can take those vertices out of such a graph and remove their colors from

neighboring lists. Solving the list coloring problem for such a graph results in a proper

coloring of the original graph. One application of this is the assignment of radio frequncies

to a new set of transmitters. Conflicts with existing transmitters must be avoided, as well

as conflicts between new transmitters. List coloring also can provide a way to make an

efficient coloring algorithm. An algorithm can keep track of which colors are unavailable at

a vertex (because some neighbor already has that color) using list coloring. One example

is Thomassen’s proof [29] that planar graphs are 5-choosable. This proof leads directly
2



to the first linear-time algorithm for 5-coloring a planar graph. Voigt [30] provided an

example with 238 vertices showing that there are planar graphs that are not 4-choosable.

A simpler example, with only 63 vertices, was found by Mirzakhani [20].

Here we combine list coloring with the weakened coloring requirement that each color

class induce a disjoint union of paths. We define the path list chromatic number χ̂P (G) to

be the minimum k such that if each vertex of G is assigned a list of size k, then G can

be colored so that each vertex receives a color from its list, and each color class induces a

disjoint union of paths.

We also consider restricted edge-colorings in graphs. Note that when coloring vertices

we speak of an i-coloring, but when coloring edges we specify an i-edge-coloring. We place

additional restrictions on the sets of colors on edges incident to a vertex. Ordinary edge

coloring requires only that no color appears twice among the edges at a vertex. We require

additionally that no set of incident colors appears at more than one vertex. Further, we

may require that each such set of size d appears at bnd/
(
k
d

)c or dnd/
(
k
d

)e vertices, where

nd is the number of vertices of degree d.

1.1.1. Path coloring

The path chromatic number χP (G) of a graph G is the least number of colors with

which the vertices of G can be colored so that each color class induces a disjoint union

of paths. (“Disjoint union of paths” means “maximum degree 2 and no cycles.”) Such a

coloring is a path coloring. We say that G is path i-colorable if χP (G) ≤ i and that G is

path i-chromatic if χP (G) = i. This extends the terminology of ordinary graph coloring

by prepending the designation of the generalized property.

In this dissertation we study path coloring for two types of graphs. First, we consider
3



cartesian products of cycles. In graph theory we often wish to know how the cartesian

product operation affects graph invariants. For example, χ(G H) = max{χ(G), χ(H)} is

an elementary observation about cartesian products and the classical chromatic number.

In Chapter 2 we determine χP (G) when G is a cartesian product of cycles. As observed

by Weaver and West [31], χP (G) depends only on the odd factors of G. Since χ(G) ≤ 3

when G is a cartesian product of cycles, we always have χP (G) ≤ 3. We characterize

which cartesian products of odd cycles G satisfy χP (G) = 2. We also consider χPk
(G),

the generalized chromatic number obtained when we require that each color class induces

a disjoint union of paths each having at most k vertices. For products of two cycles,

Weaver and West determined the values of k (depending on the lengths of the cycles)

such that χPk
(G) = 2. We show that χP (G) = 3 whenever G contains the product of

four or more odd cycles. Since χPk
(G) ≥ χP (G), this also implies that χPk

(G) = 3

for all k and all such G. For products of exactly three odd cycles, we show that the

minimal triples (a, b, c) such that Ca Cb Cc is path 2-colorable are (5, 7, 7) and (5, 5, 11).

These triples are minimal in the sense that increasing the (odd) length of any component

results in a path 2-colorable graph, but decreasing any component leaves a graph that

is not path 2-colorable. Note that every triple is comparable to at least one of these.

We also prove that χP4(G) = 3 for all products of three odd cycles, and we prove that

χP (C15 C15 C15) = χP5(C15 C15 C15) = 2. This implies the same results for all larger

products of three odd cycles. Additionally, we obtain partial results (with the aid of a

computer) on how large k must be to obtain χPk
(Ca Cb Cc) = 2 when a, b, and c are

each at most 15.

Coloring theory was first popularized by the four color problem: Is every planar graph
4



4-colorable? This problem lead Heawood [12] to determine an upper bound on the chro-

matic number for graphs on a surface. The Heawood bound depends only on ε, the Euler

characteristic of the surface, but it is valid only for ε < 2, that is, for surfaces other than

the plane. Franklin [10] improved Heawood’s bound by one for graphs on the Klein bottle.

Ringel and Youngs [25] eventually completed the solution for surfaces other than the plane

by proving that Heawood’s upper bound is attained by cliques. In 1977 Appel, Haken, and

Koch, [2] [3] proved the Four Color Theorem, stating that planar graphs are 4-colorable.

This was the final link to solve the problem of determining the maximum chromatic num-

ber of graphs embedded on surfaces. In Chapters 3 and 4 we continue the long tradition of

examining coloring problems for graphs on surfaces by examining path coloring of graphs

on the plane and torus.

Akiyama, Era, Gervacio, and Watanabe [1] were the first to consider χP (G) for various

planar graphs. They proved that outerplanar graphs are path 2-colorable and that for all

k there are planar graphs that are not Pk 3-colorable. They conjectured that χP (G) ≤ 3

for planar graphs. This conjecture was proven independently by Poh [24] and by Goddard

[11].

Figure 1.1 shows a path 3-chromatic planar graph. If we were to color it with only two

colors, then each of the three triangles that don’t include the central vertex would require

both colors (otherwise we would have a monochromatic cycle), but then the central vertex

would have at least three neighbors of its own color, no matter which color it receives.

Cowen, Goddard, and Jesurum [7] considered a property weaker than P , requiring only

that each color class induce a graph with maximum degree 2. This allows both paths and

cycles as components of the subgraph induced by a color class. They proved that toroidal
5
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graphs are 3-colorable with respect to this property. We strengthen this result by showing

that if G is a toroidal graph, then for every noncontractible chordless cycle C of G there

is a 3-coloring of the vertices of G so that two color classes induce a disjoint union of

paths, while the third color class induces a disjoint unions of paths and the cycle C. Since

removing one edge from a cycle leaves a path, we conclude that if G is a toroidal graph

then there exists an edge e of G such that χP (G − e) ≤ 3. The clique K7 embeds on the

torus and shows that this is best possible: if we use only three colors on seven vertices we

must have three vertices with the same color, which yields a monochromatic cycle.

As a corollary to our toroidal result, we conclude immediately that toroidal graphs can

always be 7-colored with some color class containing at most one vertex.

In Chapter 4 we study χ̂P (G), the path list chromatic number, for planar graphs. Such

a problem might arise, for example, if we need to assign radio frequencies to transmitters

where interference is acceptable along a path, but in no larger subgraph. The lists could

in this case model restrictions on the frequencies that the transmitters could produce, or

restrictions due to pre-existing transmitters, or both. While this particular example may
6



be a bit far-fetched, it nevertheless shows the nature of real-world applications of path list

coloring.

We show that the path list chromatic number is at most 3 for all planar graphs. (Recall

that χ̂P (G) ≤ k if, for any assignment of lists of size k to each vertex, G can be path

colored by assigning each vertex a color from its list.) This strengthens the theorem of

Poh and Goddard.

The spot chromatic number of a graph, χS(G), is the least number of colors with which

the vertices of G can be colored so that each color class induces a disjoint union of cliques.

Jacobson [13] showed that χS(Kt Kt) = t
2 +2 when t is even. In Chapter 5 we generalize

his construction to show that χS(Kmt Knt) ≤ mnt
m+n +2 min(m,n) whenever m+n divides

t. This construction is asymptotically optimal.

1.1.2. Edge-coloring

The observability of a graph G is the least number of colors in a proper edge-coloring of

G such that the color sets at vertices of G (sets of colors of their incident edges) are pairwise

distinct. This concept was introduced by Černý, Horňák and Soták [5]. In Chapter 6 we

consider a generalization of the observability of a graph. A set-balanced k-edge-coloring of

a graph G is a proper k-edge-coloring of G such that for each vertex degree d each d-set

of colors appears at bnd/
(
k
d

)c or dnd/
(
k
d

)e vertices, where nd is the number of vertices of

degree d. For example, a d-regular graph G with n vertices has a set-balanced k-edge-

coloring if the edges of G can be properly colored so that each set of d colors appears at

bn/
(
k
d

)c or dn/
(
k
d

)e vertices. Thus, when k is large enough, the question of whether G has

a set-balanced k-edge-coloring becomes the question of whether the observability of G is
7



at most k.

Černý, et. al determined the observability of complete graphs, paths, cycles, wheels, and

complete multipartite graphs with partite sets of equal size. We generalize these results to

state exactly the values of k such that graphs from these classes have set-balanced k-edge-

colorings. We also prove that certain 2-regular graphs with n vertices have observability

equal to the trivial lower bound min{j :
(

j
2

) ≥ n}. Horňák conjectured that this holds for

all 2-regular graphs. This conjecture is equivalent to “Given a set of lengths summing to

(
n
2

)
, the edges of Kn can be partitioned into closed trails realizing those lengths.”

1.2. Other extremal problems

1.2.1. Twisted Hypercubes

In multi-processor computers, processors must be able to communicate to work together

on a problem. However, it is often impractical to have every processor able to communicate

directly with every other processor. We can model a communications network using a graph

with a vertex for each processor and an edge between processors if they can communicate

with each other directly. Limiting the number of different processors a processor can

communicate with corresponds to limiting the maximum degree in the graph. The k-

dimensional hypercube Qk is a typical communication graph; it describes 2k processors,

each able to communicate directly with k others. The diameter of a communication graph

represents the maximum number of steps a message would have take to get from one

processor to another. This can be viewed as a measure of the maximum delay for message

transmission. The diameter of Qk is k. Many people have studied hypercube variants in

order to produce a graph similar to the hypercube but with smaller diameter.
8



Larson and Cull [17] list various hypercube-like graphs with 2k vertices and diameter

k
2 . They improve upon these results by constructing certain “twisted” hypercubes with

2k vertices and diameter 2k
5 . Twisted hypercubes, which generalize the usual notion of

hypercube, are defined recursively. Let G0 = {K1}. For k ≥ 1, let Gk denote the set

of graphs constructible by adding a matching joining two graphs in Gk−1. Here k is

the dimension of the resulting twisted hypercube. In Chapter 7 we construct twisted

hypercubes of dimension k with diameter on the order of 4 k
lg k . This is the first construction

of twisted hypercubes with sublinear diameter, and its diameter has the same order as the

lower bound.

1.2.2. The domination number of the Kneser graph

A dominating set S of a graph G is a a set S ⊆ V (G) such that every vertex of

V (G) \ S is adjacent to some vertex in S. The domination number γ(G) of a graph G is

the minimum size of such a set. Finding the domination number of a graph has applications

in computer networking. If a computer network is represented as a graph, the domination

number represents the minimum number of servers needed to ensure that each computer is

adjacent to a server. Note that γ(G) can be thought of as a generalized coloring parameter.

It is the minimum number of colors with which G can be colored so that each color class

induces a subgraph with a dominating vertex. We also define a total dominating set S of a

graph G to be a set S ⊆ V (G) such that every vertex in V (G) is adjacent to some vertex

in S, and we write γt(G) for the minimum size of such a set.

The Kneser graph K(n, k) has as vertices the k-sets of [n]. Two vertices of K(n, k) are

adjacent if the k-sets are disjoint. Values of graph invariants for the Kneser graph are
9



of interest to graph theorists. In a classic paper, Lovász [19] proved that the chromatic

number of K(n, k) is k + 2, proving a long standing conjecture of Kneser [15].

In Chapter 8 we prove that γ(K(n, k)) = γt(K(n, k)) = k + t + 1 when k2 + k− t, when

k2 + k− tbk
2 c ≤ n < k2 + k− (t− 1)bk

2 e and t ≤ dk
2 e. We extend our construction of total

dominating sets to smaller n, but in that range optimality is unknown.

Our work in this area also has applications to a classic problem in design theory.

M(n, k, l) is the minimum size of a family of k-element subsets of [n] such that every

l-element subset is contained in at least one of the k-sets. Since a set is adjacent in the

Kneser graph K(n, k) to thes sets contained in its complement, the total domination num-

ber of the Kneser graph is exactly M(n, n−k, k). In 1963, Erdos and Hanani [9] conjectured

that given k and l the value of M(n, k, l) approaches the trivial lower bound
(
n
l

)
/
(
k
l

)
as n

approaches infinity. It was not until 1985 that Rödl [26] proved this conjecture, using the

celebrated Rödl Nibble method. Our result gives exact values of these covering parameters

for values of n that are bounded in terms of k.

1.3. Additional notation and terminology

In this section we review basic terminology and notation of graph theory used through-

out the thesis. We let V (G) and E(G) denote the vertices and edges of a graph G,

respectively. An edge is a vertex pair; we write uv for the edge with vertices u and v. The

vertices of an edge are its endpoints. An edge joins its endpoints. A simple graph has

at most one copy of each vertex pair as an edge, while in a multigraph we allow multiple

edges between vertices. The size e(G) of a graph is |E(G)|. The order n(G) of a graph

is |V (G)|. The complement of a simple graph G, written G, is the simple graph with the
10



same vertex set as G, such that uv ∈ E(G) if and only if uv 6∈ E(G).

An isomorphism f between two graphs G and H is a function f : V (G) → V (H) such

that f(u)f(v) ∈ E(H) if and only if uv ∈ G. We say two graphs are isomorphic if there

is an isomorphism between them. We often use the same notation for a graph and its

isomorphism class. We write nG to denote the graph consisting of n disjoint copies of G.

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G). An

induced subgraph of G is a subgraph H such that every edge of G with both endpoints in

V (H) is in E(H). When S ⊆ V (G) we write G−S to denote the subgraph induced by the

vertices V (G) − S. A complete graph or clique is a graph in which every pair of vertices

forms an edge. We write Kn for the clique on n vertices. An independent set in a graph G

is a subset S ⊆ V (G) such that S does not contain both endpoints of any edge in G, that

is, the subgraph induced by S is the complement of a clique.

A graph is bipartite if its vertex set can be partitioned into two independent sets, called

partite sets. A complete bipartite graph has as edges all pairs consisting of one vertex from

each partite set. A complete multipartite graph has a partition into partite sets such that

every pair of vertices from different partite sets forms an edge. A complete multipartite

graph is equipartite if each partite set has the same number of vertices.

When two vertices x and y form an edge, we say that they are adjacent or that they

are neighbors and write x ↔ y. We write N(x) for the neighborhood (set of neighbors) of

a vertex x, and we define N(X) =
(⋃

x∈X N(x)
)

for the neighborhood of a set of vertices

X. The degree of a vertex v, written d(v), is the number of neighbors of v. The maximum

degree of a graph G is the maximum of the degrees of vertices in G, written ∆(G). A graph

is even if every vertex has even degree. If every vertex of a graph G has degree d, then G
11



is d-regular.

The cartesian product of two graphs G and H is the graph G H with vertex set

V (G) × V (H) and an edge joining (g1, h1) and (g2, h2) if and only if 1) g1 = g2 and

h1 ↔ h2 or 2) g1 ↔ g2 and h1 = h2. The join of two graphs G and H is the graph G ∨H

with vertex set V (G) ∪ V (H) and edge set consisting of the edges of G, the edges of H,

and all pairs consisting of a vertex of G and a vertex of H.

A walk of length k is a sequence v0, e1, v1, e2, . . . , ek, vk of vertices and edges such that

ei = vi−1vi for all i. The endpoints of a walk are its first and last vertices. A trail is a

walk with no repeated edge. An Eulerian trail in a graph G is a trail that uses every edge

of G. A path is a walk with no repeated vertex. A walk or trail is closed if its first vertex

is the same as its last.

A path is a graph whose vertices can be listed in order so that the edges are precisely

the pairs of consecutive vertices. The first and last vertices of a path are known as its

endpoints; a path with endpoints x and y is an x, y-path. A cycle is a graph whose vertices

can be listed cyclically so that the edges are precisely the pairs of consecutive vertices.

We can specify a path in a simple graph by listing its vertices from either end. We can

specify a cycle by listing its vertices cyclically, starting with any vertex and proceeding in

either direction. A spanning cycle of a graph G is a cycle using every vertex in V (G). Two

paths are internally-disjoint if the only vertices they have in common are endpoints. We

use Pn to denote the [isomorphism class of] paths with n vertices, similarly Cn denotes

cycles with n vertices. A chord of a cycle C (resp. path P ) in a graph G is an edge in G

that has as endpoints two non-consecutive vertices of C (resp. P ).

The distance d(x, y) between two vertices x and y is the length of the shortest path
12



between them. The diameter of a graph is the maximum of d(x, y) over all pairs of

vertices x, y. The radius of a graph G is minx∈V (G) maxy∈V (G){d(x, y)}. Any vertex x

that minimizes maxy∈V (G){d(x, y)} is a center of G.

Edges with a common vertex are incident. A matching is a set of edges in which no two

are incident. A perfect matching of a graph G is a matching M in which every vertex in

V (G) is in some edge in M . A decomposition of a graph G is a partition of its edge set

E(G). Thus a proper edge-coloring of a graph is a decomposition of it into matchings.

A graph is planar if it can be drawn in the plane with no crossing edges. Such a drawing

is called an embedding. A graph is outerplanar if it has an embedding in the plane such

that there exists a face containing every vertex.

We denote the largest integer no larger than x by bxc; similarly dxe denotes the smallest

integer no smaller than x. We write [n] for the set {1, 2, . . . , n}. A k-set is a set with k

elements. A k-subset of S is a k-set contained in S.

A graph G is connected if for all x, y ∈ V (G) there is an x, y-path. A vertex cut of a

graph G is a set S ⊆ V (G) such that G − S is not connected. A vertex cut of size 1 is a

cut-vertex. A graph G is k-connected if every vertex cut of G has at least k vertices. A

block of a graph G is a maximal connected subgraph of G that has no cut vertex.

In chapter 3 we will need Menger’s theorem, which states that for any pair x, y of vertices

in a k-connected graph there exist k pairwise internally-disjoint x, y-paths. We will also

use the fact that every planar triangulation with at least 4 vertices is 3-connected.

In chapter 6 we will use that G has a closed Eulerian trail if and only if G is connected

and even, and that G has a non-closed Eulerian trail if and only if G is connected and has

exactly two vertices with odd degree.
13



In chapter 8 we will need Shannon’s theorem [27], which states that a multigraph with

maximum degree k is b 3k
2 c-edge-colorable.

A function f(n) is in Θ(g(n)) if there exist constants c1 and c2 such that for sufficiently

large n, c1g(n) ≤ f(n) ≤ c2g(n).

14



2. Path colorings of cartesian products of cycles

The path-chromatic number χP (G) of a graph G is the least number of colors with which

the vertices of G can be colored so that the subgraph induced by each color class induces

a disjoint union of paths. (“Disjoint union of paths” means “maximum degree 2 and no

cycles.”) We say that G is path i-colorable if χP (G) ≤ i and that G is path i-chromatic if

χP (G) = i. We define χPk
to be the minimum j such that G can be colored with j colors

so that each color class is a disjoint union of paths with at most k vertices.

In this chapter we determine χP (G) when is G a cartesian product of cycles. Since

χ(G) ≤ 3 for such graphs, we always have χP (G) ≤ 3, and the problem is to determine

when χP (G) = 2.

Lemma 2.1. If G is a graph with χP (G) ≥ 2 and H is a bipartite graph, then χP (G H) =

χP (G).

Proof: Let f be a path χP (G)-coloring of G, and let X and Y be the partite sets of

H. Define a coloring g of G H by

g(v, w) =
{

f(v) if w ∈ X

f(v) + 1 mod χP (G) if w ∈ Y .

Under g no two adjacent vertices with the same first coordinate have the same color,

since two such vertices must have second coordinate in opposite partite sets of H. Vertices

with the same second coordinate induce copies of G colored by f , which is a path coloring.

Thus g is a path coloring of G H. ut

Lemma 2.1 implies that when G is a cartesian product of cycles, χP (G) depends only

on the odd factors of G. In the following we thus assume (without loss of generality) that

G is a cartesian product of odd cycles.
15



Weaver and West [31] observed that cartesian products of one or two odd cycles are path

2-colorable. For products of two odd cycles, they also showed that χPk
(G) = 2 unless at

least k−2 of the two odd factors have length 3. They also observed (see Lemma 2.1.1 that

Pk 2-coloring becomes easier for products of odd cycles as the odd cycle lenths increase.

They thus asked the following for products of three or more odd cycles:

(1) For a given number of factors, what is the largest value of k such that χPk
(G) = 3

regardless of the length of the factors. Is this value finite?

(2) Let G be a cartesian product of r ≥ 3 odd cycles and let t be the length of the shortest

factor. Is there a value t1(r) such that t ≥ t1(r) implies χPk
(G) = 2 when k is sufficiently

large?

We prove that no product of four or more odd cycles is path 2-colorable, that is, that

the value desired in (1) is infinite when r ≥ 4. We also give an affirmative answer to

question (2) for products of three odd cycles.

2.1. Products of three or fewer odd cycles

We first prove that if a cartesian product of odd cycles is path 2-colorable, then so is

the cartesian product of longer odd cycles. We denote the vertices of Ci1 Ci2 · · · Cin

as vectors (a1, a2, . . . , an), where 1 ≤ aj ≤ ij . The jth level of such a graph is the graph

(isomorphic to Ci1 Ci2 · · · Cin−1) induced by vertices (a1, a2, . . . , an−1, j). A slice of

such a graph is formed in a similar manner by fixing any coordinate.

Lemma 2.1.1. (Weaver-West [31]) If χPj (Ci1 Ci2 · · · Cin) = 2, then χPj (Ci1 Ci2 · · ·

Cin−1 Cin+2) = 2.

Proof: Let G = Ci1 Ci2 · · · Cin and H = Ci1 Ci2 · · · Cin+2. Let f : V (G) → {0, 1}
16
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be a path 2-coloring of G. Define a coloring g : V (H) → {0, 1} of H by

g(a1, a2, . . . , an) =





f(a1, a2, . . . , an), if an ≤ in;
1− f(a1, a2, . . . , in), if an = in + 1;
f(a1, a2, . . . , in), if an = in + 2.

Essentially, this duplicates level in of G, with the two copies separated by a third copy

with the colors inverted. This operation does not introduce any new edges into the graphs

induced by each color, while it actually breaks any monochromatic path or cycle that

passes through level i, i.e. uses levels in−1, in and 1. ut

Weaver and West [31] observed that Lemma 2.1, Lemma 2.1.1, and the colorings of

Figure 2.1 imply that every cycle-product with at most two odd cycles is path 2-colorable.

In the figures we show edges that “wrap around” as half edges, they actually connect

vertices on opposite sides of the diagram.

We next show that the product of three odd cycles is path 2-colorable when each cycle

has length at least 15. In fact, our colorings induce no monochromatic path with more

than 5 vertices. This answers the second question of Weaver and West in the affirmative.

Theorem 2.1.2. Let G = Ca Cb Cc be the cartesian product of three odd cycles. If a,

b, and c are each at least 15, then χP (G) = χP5(G) = 2.

Proof: Begin with the coloring h of H = C5 C5 shown in Figure 2.2. Use it to define

a coloring g of G = C5 C5 C5 by g(a1, a2, a3) = h(a1 − a3, a2 − a3). Thus, each level of
17
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G is colored as in Figure 2.2, but the colorings are shifted diagonally from level to level.

Now apply the operation of Lemma 2.1.1 to each slice of G in each dimension to obtain

a coloring g′ of G′ = C15 C15 C15. As noted in the proof of Lemma 2.1.1, there are no

monochromatic paths or cycles in G′ that pass through any slice in any direction. Thus,

every monochromatic path or cycle in this coloring must appear in a 2 by 2 by 2 cubelet

that also occurs as a 2-colored 2 by 2 by 2 cubelet of G.

By inspection of the coloring g, we can see that for each vertex in G there is at least one

direction in which both of its neighbors are of the opposite color. For the vertices where

this does not occur within a level, the nearest vertices along increasing diagonals have the

opposite color. The diagonal shift from level to level causes the property to hold in the

third direction.

Thus, in every 2 by 2 by 2 cubelet of G (and hence in G′), each vertex has at most two

neighbors with its own color. Among such colorings of the 2 by 2 by 2 cube, only those of

Figure 2.3 (modulo the switching of colors) have monochromatic cycles. (In Figure 2.3 the

first coordinate is horizontal, the second extends diagonally, and the third is vertical.) For

each such colored cubelet, we note the coloring of a subgraph of H that would cause that

cubelet to appear in G. Because the coloring of H is shifted diagonally from level to level

when coloring G, the front left top vertex of each cubelet of G has the same color as the
18
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back right bottom vertex. Thus, the cubelets in the top row of Figure 2.3 cannot occur in

G. Since h contains none of the colorings corresponding to cubelets in the bottom row of

Figure 2.3 (or the colorings obtained by switching colors), we are assured that G′ has no

monochromatic cycles.

Additionally, since the longest monochromatic path in any path coloring of a 2 by 2 by

2 cube with 2 colors has length 5, (and, as noted, each monochromatic path in G′ occurs

in such a cubelet), we have proved the stronger result that χP5(G
′) = 2. Lemma 2.1.1 now

implies that χP5(Ca Cb Cc) = 2 whenever a ≥ 15, b ≥ 15, and c ≥ 15. ut

Theorem 2.1.3. If G is a cartesian product of three odd cycles, then χP4(G) = 3.

Proof: If every 2 by 2 by 2 cubelet has four vertices of each color, then each color is

used on the same number of vertices, because each vertex appears in the same number of
19
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cubelets. This can not happen since the total number of vertices is odd. Thus, every path

2-coloring of Ca Cb Cc has a cubelet that does not have four vertices of each color. The

only path 2-coloring for such a cubelet (up to symmetry and switching of colors) is shown

in Figure 2.4, and this coloring induces a monochromatic path of length 5. ut

Theorem 2.1.4. If G = C3 Cb Cc, where b and c are odd, then χP (G) = 3.

Proof: Consider a hypothetical path 2-coloring of C3 Cb Cc. Color Cb Cc by

projection, giving (i, j) the color used on the majority of (1, i, j), (2, i, j), and (3, i, j).

Because Cb Cc has an odd number of vertices, it cannot happen that each 2 by 2 square

has 2 of each color, using symmetry as in the proof of Theorem 2.1.3. Thus, we may

assume that (1, 1), (2, 1), and (1, 2) have the same color.

Let H be the subgraph of C3 Cb Cc induced by vertices with second and third

coordinate equal to 1 or 2. By listing as successive columns the vertices whose last two

coordinates are (2,1), then (1,1), then (1,2), then (2,2), we see that H is isomorphic to

C4 C3, colored so that the first three columns H each have a majority of the same color

(shown in black in Figure 2.5). Without loss of generality, we may assume that the first

two columns are colored as in the first diagram of Figure 2.5. Since each vertex has no

more than two neighbors of its own color, the middle row vertices in the other columns

must have the other color (white), as shown in the second diagram. Since the majority
20
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color in the third column is the same as in the first two columns, the coloring must be as

in the third diagram of Figure 2.5. Avoiding degree 3 and cycles in black forces the two

remaining vertices to be white, but then the subgraph induced by the white vertices has a

vertex of degree 3. Thus our hypothetical path 2-coloring of C3 Cb Cc cannot exist. ut

When attempting to path 2-color products of three odd cycles, longer cycles give us

more freedom, but limiting the size of induced monochromatic paths gives us less freedom.

We have shown that if the smallest cycle has length at least 15 we can always path 2-color

the product without inducing monochromatic paths with 6 vertices. We have also shown

that if the smallest cycle has length 3, then the product is not path 2-colorable. Which of

the remaining products of three odd cycles are path 2-colorable? What is the minimum k

for which we can achieve χPk
(G) ≤ 2? Computer analysis (exhaustive search) has shown

the following:

χP (C5 C5 Cc) = 3 for odd c ≤ 9.

χP13(C5 C5 C15) = 3 but χP14(C5 C5 C11) = 2

χP8(C5 C7 C7) = 3 but χP9(C5 C7 C7) = 2.

Thus, the minimal triples (a, b, c) such that Ca Cb Cc is path 2-colorable are (5, 7, 7)

and (5, 5, 11). These triples are minimal in the sense that all larger products of three odd

cycles are path 2-colorable, by Lemma 2.1.1.
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2.2. Products of four or more odd cycles

Theorem 2.2.1. If G is a cartesian product of four or more odd cycles, then

χP (G) = 3.

Proof: Let G = Ca Cb Cc Cd, and consider a hypothetical path 2-coloring g of

G. For 1 ≤ l ≤ d, define Hl = Ca Cb Cc, and let hl(i, j, k) = g(i, j, k, l). For each l, hl

is a proper coloring of Hl. As noted in the proof of Theorem 2.1.2, every path 2-coloring

of Hl must contain a 2 by 2 by 2 cubelet colored as in Figure 2.4. Find such a cubelet in

H1. Figure 2.6 depicts such a cubelet on the left and the corresponding cubelet of H2 on

the right (so 0 ↔ 0′, 1 ↔ 1′, etc.).

Vertices 1′, 2′, 3′ must be black, otherwise one of 1,2,3 will have three neighbors of its

own color. Then 0′ must be white to avoid the black cycle (0′, 1′, 2′, 3′). Also, 7′ must be

white so that 3′ has only two black neighbors. Now any way of coloring the three remaining

vertices 4′, 5′, 6′ must use exactly two black and one white, otherwise there is a white cycle

or a white vertex with three white neighbors.

Each such coloring of the cubelet of H2 looks like the coloring of the cubelet of H1

with the colors inverted to have five black and three white vertices, although it may have

a different orientation. Similarly, the corresponding cubelet of H3 again has a similar
22



coloring, with the same majority color as the cubelet of H1. Repeating the analysis

shows that every copy of this cubelet has an unbalanced coloring, with the majority color

alternating as we traverse the cycle of copies. However, we cannot alternate two options

along an odd cycle. ut
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3. Path colorings of toroidal graphs

In this chapter we show that every toroidal graph can be 3-colored so that two of the

color classes induce disjoint unions of paths and the third induces a disjoint union of paths

and at most one cycle. We will need the following definitions.

A plane graph is an embedding of a planar graph in the plane, and a torus graph is an

embedding of a toroidal graph in the torus. If every face of a plane graph G except one is

a triangle, then we say that G is weakly triangulated. Usually in such an embedding the

non-triangular face appears as the unbounded region, called the outer face. Vertices not

on the outer face of a plane graph are interior vertices. A plane graph G is outerplanar if

all vertices of G lie on a single face. We often specify a path or cycle by listing its vertices

so that consecutive vertices are adjacent. In simple graphs, this introduces no ambiguity.

If P and P ′ are paths that have no vertices in common and the last vertex of path P is

adjacent to the first vertex of P ′ we write P ·P ′ to denote the path consisting of P and

P ′ and the edge from the end of P to the beginning of P ′. If also the first vertex of P is

adjacent to the last vertex of P ′, then P ·P ′ denotes the cycle consisting of P and P ′ and

the two intervening edges.

3.1. Path coloring of planar graphs

We first need to develop a lemma. Independently discovered, it is equivalent to one used

by Poh [24] in proving that χP (G) ≤ 3 for each planar graph G). The second condition of

the lemma is a technical loading of the induction hypothesis that simplifies the inductive

proof.

Lemma 3.1.1. Let G be a weakly triangulated plane graph whose outer face is a cycle
24



C = (x1, x2, . . . , xp). If C is 2-colored so that each color class induces a non-empty path,

then the coloring can be extended to a 3-coloring of G such that

1. each color class induces a disjoint union of paths, and

2. the (precolored) vertices of C are adjacent to no additional (interior) vertices of their

own color.

Proof: We use induction on the number of vertices. For graphs with at most three

vertices the statement is trivial.

For larger graphs, consider a graph and a coloring of the outer face C as specified

in the hypotheses. We may assume that C has length p, with x1, x2, . . . , xq blue and

xq+1, xq+2, . . . , xp red).

Suppose first that there is an edge other than x1xp or xqxq+1 joining a blue vertex

and a red vertex, say xbxr, where 1 ≤ b ≤ q and q + 1 ≤ r ≤ p. In this case, apply

the induction hypothesis to the subgraphs obtained from the embeddeing by extracting

the cycles (xr, xr+1, . . . , xp, x1, x2, . . . , xb) and (xb, xb+1, . . . , xq, xq+1, . . . , xr−1, xr) with

their interiors (see Figure 3.1). Since these colorings agree on the vertices common to both,

we can combine them to form a coloring of G. Condition 2 guarantees that the two pieces

of each path have not been extended into the interior. Thus, they still fit together to form

a single path when we combine the colorings, so Condition 1 is satisfied. Condition 2 holds

for the coloring of G since it holds for the colorings of the subgraphs.

If there is no such edge xbxr, let y be the third vertex on the interior face bounded by

x1xp, and let z be the third vertex on the face bounded by x1xq+1.

Let P = (y, y1, . . . , yl, z) be a chordless y, z-path in G − V (C). Such a path exists

because G is weakly triangulated and has no edge from a blue vertex to a red vertex. If
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y = z then P = (y). Now we can color the vertices of P green and apply the inductive

hypothesis to the subgraphs of G obtained from the embedding by extracting the cycles

(y, y1, . . . , yl, z, xq, xq−1, . . . , x2, x1) and (y, y1, . . . , yl, z, xq+1, xq+2, . . . , xp) with their in-

teriors (see Figure 3.2).

Again, these colorings agree on common vertices and thus can be combined to form a

coloring of G. Condition 2 guarantees that P was not extended in either coloring, so this

coloring of G is a path coloring, and Condition 1 is satisfied. Condition 2 is also satisfied,

since it holds for the colorings of the subgraphs. ut
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First, we note that this lemma immediately yields the theorem of Poh and Goddard.

We subsequently use the lemma in the next section.

Theorem 3.1.2. (Poh [24], Goddard [11]) If G is a planar graph, then χP (G) ≤ 3.

Proof: Since adding edges does not make G easier to color, we may add edges to an

embedding of G to make it a triangulated graph, color two vertices of the outer face blue

and the third red, and apply Lemma 3.1.1. ut

3.2. Coloring torus graphs

In topology, we can get a sphere from a torus by cutting the torus and filling in the

two holes with discs. In the following theorem we perform basically the same operation

to a graph, in order to get a planar graph from a toroidal graph. We cut along a non-

contractible cycle, and the resulting embedded graph on the sphere has two copies of this

cycle, each bounding a face. We will subsequently contract the copies of this cycle and

apply Lemma 3.1.1 to pieces of the resulting plane graph.

Theorem 3.2.1. If G is a torus graph with a chordless noncontractible cycle C, then G

can be 3-colored so that two color classes each induce a disjoint union of paths, while the

third color class induces a disjoint union of paths and the cycle C

Proof: Let G be a torus graph, and C be a chordless noncontractible cycle of G. We

construct H, a planar graph, by cutting the embedding of G along C. This replaces C

with two copies of itself, C1 and C2. Each edge from a vertex x not in C to a vertex y

in C is replaced with an edge from x to one of the copies of y . “Cutting” a cycle in this

manner turns a toroidal graph into a planar graph where the regions enclosed by C1 and
27



C2 are faces. Now form H ′ by contracting C1 and C2 to vertices x̂ and ŷ and then adding

any edges (other than x̂ŷ) necessary to triangulate the resulting planar graph. It is now

sufficient to 3-color H ′ so that each of the color classes induces a disjoint union of paths

and x̂ and ŷ are the same color but are not adjacent to any other vertex of that color.

After transferring this coloring back to G by giving all of C that color, C will be the only

cycle induced by a color class. Note that x̂ and ŷ are not adjacent, since C is chordless in

G.

Since H ′ is a triangulation, the neighbors of any vertex form a cycle in H ′. Given a1

and a2 adjacent to a, we will use the interval notation [a1, a2]a (resp. (a1, a2)a ) where a1

and a2 are adjacent to some vertex a to denote the subset of neighbors of a from a1 to a2

in clockwise order, including (resp. excluding) a1 and a2. We will similarly write P [pj , pk]

where pj and pk are vertices on some path P to denote the subpath of P from pj to pk,

including pj and pk.

We now have two cases:

Case 1. |N(x̂) ∩N(ŷ)| ≥ 2, where z1, z2, . . . , zn are the common neighbors of x̂ and ŷ

listed in clockwise order around x̂ (which is necessarily counterclockwise order around ŷ).

Although z1, z2, . . . , zn need not induce a cycle, we will treat indices modulo n.

For each i with 1 ≤ i ≤ n, we must color the vertices in the region bounded by the

cycle (x̂, zi, ŷ, zi+1). To do so, we find chordless paths Yi from zi+1 to zi in [zi+1, zi]ŷ

and Xi from zi to zi+1 in [zi, zi+1]x̂. Then, we color V (Yi) − {zi+1, zi} red, the interior

vertices of V (Xi) − {zi, zi+1} blue, and x̂ and ŷ green. The vertices in {zi : 1 ≤ i ≤ n}

may be colored blue or red arbitrarily, as long as both red and blue are used at least once

so that this set does not form a monochromatic cycle with the paths {Xi} or {Yi}. Now,
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each color class induces a disjoint union of paths, and we can complete the coloring of H ′

by applying Lemma 3.1.1 to the following for each i with 1 ≤ i ≤ n (see Figure 3.3.):

1. The region bounded by ŷ and the interior vertices of Yi.

2. The region bounded by x̂ and the interior vertices of Xi.

3. The region bounded by Xi and Yi.

The combine to form a coloring of H ′, since they agree on common vertices. Note that

Condition 2 of Lemma 3.1.1 is needed here. We must ensure that none of the precolored

paths aquires neighbors in its color off these paths, causing a vertex of degree three.

Condition 1 of Lemma 3.1.1 then guarantees that the resulting coloring is a path coloring.

Case 2. |N(x̂)∩N(ŷ)| ≤ 1. Since H ′ is triangulated, it is 3-connected, so we can apply

Menger’s theorem and find three pairwise internally-disjoint induced paths from x̂ to ŷ. Let
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P = (p1, p2, . . . , pm) and Q = (q1, q2, . . . , qn) be the paths formed by the internal vertices

of two such x̂,ŷ-paths, where P is chosen to be as short as possible. If |N(x̂) ∩N(ŷ)| = 1,

then P is the common neighbor of x̂ and ŷ.

At this point, we would like to have two paths that (with x̂ and ŷ) partition the plane

into regions where Lemma 3.1.1 applies if we use one color on each path. The obvious

candidates are shown in Figure 3.4, where Ap and Aq are paths in N(x̂) and Bp and

Bq are paths in N(ŷ). Note that p1, q1, pm, and qn do not appear in the paths we call

Ap, Aq, Bp, Bq. The regions bounded by the cycles x̂·Ap, x̂·Aq, ŷ·Bp, ŷ·Bq, P ·Bp·Q·Aq,

and P ·Bq·Q·Ap then bound all uncolored vertices in the graph. This approach does not

work without further care. If there is an (say) edge from some vertex of P other than p1

to some vertex of Ap then P and Ap do not form an induced path. Our solution is to use

such a chord if it exists, skipping vertices bypassed by the chord. We then must extend

Aq to use the vertices no longer used in Ap (see, for instance, Figure 3.6) Note that a

chord from p1 to some internal vertex of Q does not cause problems unless Aq is extended

in this manner. The following four subcases of case 2 describe exactly how we must use

such chords and how to extend Ap and Aq so that the pieces can be put together to form

induced paths.

We define P+ = {p2, p3, . . . , pm} and Q+ = {q2, q3, . . . , qn}. Define paths P ′, Q′, Ap

and Aq as follows:

Case 2a. P+ and (p1, q1)x̂ are pairwise non-adjacent and Q+ and (q1, p1)x̂ are pairwise

non-adjacent. (This is the case where there are no “bad” chords.) Let P ′ = P , Ap =

(p1, q1)x̂, Q′ = Q, and Aq = (q1, p1)x̂ (Figure 3.5).

Case 2b. Q+ and (q1, p1]x̂ are pairwise non-adjacent, but at least one edge joins P+ and
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Figure 3.5 Case 2a. Figure 3.6: Case 2b.

(p1, q1)x̂. (This case forbids edges from p1 to Q+.) Let w be the last vertex (in clockwise

order around x̂) in (p1, q1)x̂ that has a neighborin P+, and let i = max{j : pj ∈ N(w)}.

Define P ′ = w·P [pi, pm], Ap = (w, q1)x̂, Q′ = Q, and Aq = (q1, w)x̂. (Figure 3.6).

Case 2c. P+ and (p1, q1]x̂ are non-adjacent, but at least one edge joins Q+ and (q1, p1)x̂.

(This case forbids chords from Q1 to P+ and is symmetric to Case 2b.) Let w′ be the

last vertex (in clockwise order around x̂) in (q1, p1)x̂ that has a neighbor in Q+, and let
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i′ = max{j : qj ∈ N(w′)}. Define P ′ = P , Ap = (p1, w
′)x̂, Q′ = w′·Q[qi′ , qn], and

Aq = (w′, p1)x̂. (Figure 3.7).

Case 2d. At least one edge joins P+ and (p1, q1]x̂ and at least one edge joins Q+ and

(q1, p1]x̂. (Either Case 2a or Case 2d may be used when all edges from P+ to (p1, q1]x̂

involve q1 and all edges from Q+ to (q1, p1]x̂ involve p1.) Let w be the last vertex (in

clockwise order around x̂) in (p1, q1]x̂ that has a neighbor in P+, let i = max{j : pj ∈ N(w),

let w′ be the last vertex (in clockwise order around x̂) in (q1, p1]x̂ that has a neighbor

in Q+, and let i′ = max{j : qj ∈ N(w′)} Define P ′ = w·P [pi, pm], Ap = (w, w′)x̂,

Q′ = w′·Q[qi′ , qn], and Aq = (w′, w)x̂. (Figure 3.8).

Now let A′p be a chordless path with the same endpoints as Ap and V (A′p) ⊆ V (Ap).

We obtain A′p by using chords of Ap if they exist, skipping the vertices on Ap between the

endpoints of chords. Similarly, obtain A′q from Aq.

In a manner similar to the above, we start with P ′ and Q′ instead of P and Q and

use the neighbors of ŷ to define chordless paths P ′′ and Q′′ from P ′ and Q′ and chordless
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paths B′
p and B′

q within N(ŷ). Note that A′p and A′q share no vertices with B′
p and B′

q,

since if N(x̂) and N(ŷ) intersect, they do so in only the vertex, p1 = P ′ = P ′′.

The cycle x̂·P ′′·ŷ·Q′′ separates A′p from B′
p and A′q from B′

q (see Figure 3.9). This,

together with the choices of A′p, B′
p, A′q, and B′

q, assures us that A′p·P ′′·B′
p is a chordless

path, as is A′q·Q′′·B′
q. Color the vertices of A′p·P ′′·B′

p red, the vertices of A′q·Q′′·B′
q blue,

and x̂ and ŷ green. Now, regions bounded by the following six cycles contain all of the

uncolored vertices of H ′.

1. x̂·A′q.
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2. x̂·A′p.

3. ŷ·B′
q.

4. ŷ·B′
p.

5. P ′′·B′
p·Q′′·A′q.

6. P ′′·B′
q·Q′′·A′p.

Since each of these cycles satisfies the hypotheses of Lemma 3.1.1, we can apply that

lemma to color the vertices in each of these regions. Again, since these colorings agree on

common vertices, we can combine them to get a coloring of H ′. Condition 2 of Lemma 3.1.1

implies that no pre-colored path received a neighbor with the same color. Together with

Condition 1, this implies that the resulting coloring of H ′ is a path coloring in which x̂

and ŷ have no green neighbors. As we observed at the start of the proof, this yields the

desired coloring of G. ut

3.3. Other Results

Lemma 3.1.1 can also be used to show that some nonplanar graphs have path chromatic

number at most 3. The crossing number of a graph is the least k such that the graph can

be drawn on the plane with k edge crossings. The following result can be used to show that

graphs with crossing number at most 1 are path 3-colorable. It would be interesting to find

the maximum t such that all graphs with crossing number at most t are path 3-colorable.

Corollary 3.3.1. Let G be a simple graph. If there exists a set of edges S of G and a

planar embedding of G \ S that satisfies the two conditions below, then χP (G) ≤ 3.

1. The endpoints of edges in S are all on the outer face.

2. The outer face can be 2-colored such that G \ S satisfies the hypothesis of Lemma 3.1.1
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and each edge in S connects vertices of opposite color.

Proof: Apply Lemma 3.1.1 to G\S with the given coloring. Since edges in S connect

vertices of opposite color, the resulting coloring of G is valid. ut

Corollary 3.3.2. If G has crossing number 1, then χP (G) ≤ 3.

Proof: Let S be the two crossing edges vw and xy in some drawing of G on the plane.

Add to G all edges in {vx, vy, wx, wy} that are not already present. This can be done

without additional crossings, since vw and xy form the only crossing in G. Color v and x

blue, and color w and y red. Redraw G (if necessary) so that the face bounded by v, w, x

and y is the outer face. Corollary 3.3.1 now applies. ut

Heawood [12] showed that χ(G) ≤ 7 when G is a toroidal graph, but more can be

said: toroidal graphs can be 7-colored so that only one vertex has the seventh color.

As mentioned by Dirac [8], P. Ungar proved that any toroidal graph requiring 7 colors

contains K7 as a subgraph. Theorem 3.2.1 yields an elementary proof of a weaker form of

this statement:

Theorem 3.3.3. Let G be a toroidal graph. If G has an embedding that has a chordless

even noncontractible cycle, then χ(G) ≤ 6. Otherwise, G can be colored with seven colors

so that the one color class consists of only one vertex.

Proof: Since a disjoint union of paths is bipartite, we can properly color G by using

two colors for each color class in the coloring from Theorem 3.2.1, unless the cycle in the

third color class is an odd cycle. In that case, we need one vertex of another color to

properly color that cycle. ut
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We believe that the condition “G has no chordless even noncontractible cycle” implies

that G contains K7 as a subgraph. This would give another proof of Ungar’s Theorem.
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4. Path list colorings of planar graphs

In this chapter we combine the path chromatic number (discussed in chapters 2 and

3) with the idea of list coloring to get the list path chromatic number χ̂P . We show that

planar graphs have list path chromatic number at most 3.

Recall that χ̂P (G) ≤ k if, for every assignment of lists of k colors to V (G), a color can

be chosen for each vertex from its list so that each color class induces a disjoint union of

paths.

Theorem 4.1. If G is a planar graph, then χ̂P (G) ≤ 3.

We actually prove a stronger statement as given in the following lemma. We show that

we can find a more restrictive coloring, even when some lists have fewer than three colors.

When f is a coloring of a graph, we define df (x) to be the number of neighbors of x that

receive the same color as x. A cut-vertex of a connected graph G is a vertex v such that

G − v has at least two components. A cut-vertex v separating two vertices x and y is a

vertex v such that x and y are in different components of G− v.

Lemma 4.2. Let G be a connected planar graph with distinguished vertices x and y (not

necessarily distinct) on the outer face, and let S be the (possibly empty) set of cut-vertices

separating x from y. If L is an assignment of lists to the vertices of G such that

|L(v)| ≥





1, if v ∈ S ∪ {x, y}
2, if v is any other vertex on the outer face
3, if v is an interior vertex,

then there is a path coloring f of G such that 1) f(v) ∈ L(v) for all v ∈ V (G), and 2)

df (x), df (y) ≤ 1.

Before we prove Lemma 4.2 we prove that its hypotheses hold in certain situations. We

then use this in the inductive proof of Lemma 4.2 itself.
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Proposition 4.3. Let H be a plane graph with P a chordless path consisting of con-

secutive vertices on the outer face of H so that H − V (P ) is connected. Also let L be an

assignment of lists to the vertices of G such that

|L(v)| ≥





1, if v ∈ V (P )
2, if v is any other vertex on the outer face
3, if v is an interior vertex.

Suppose there is a common color c with c ∈ L(v) for all v ∈ V (P ). Let H ′ = H − V (P )

and define

L′(v) =
{

L(v), if v has no neighbors in P

L(v)− c, if v has at least one neighbor in P

Then there exist x′ and y′ in H ′ so that H ′, L′, x′, and y′ satisfy the hypothesis of

Lemma 4.2.

Proof: Figure 4.1 depicts a typical example, where the color list {a, b, c} is denoted

abc. Let the vertices along the outer face of H be denoted z1, z2, . . . , zl in clockwise order.

(Note that a cut-vertex may appear repeatedly in the list of vertices along the outer face).

We will treat subscripts modulo l. Without loss of generality, we may assume P begins at

z2 and proceeds clockwise. Define q so that zq is the last vertex of P , and let x′ = z1 and

y′ = zq+1

We claim that H ′, L′, x′, and y′ satisfy the hypotheses of Lemma 4.2. Let S be the set

of cut-vertices separating x′ from y′. Since list sizes went down by at most 1 and every

vertex not in P began with a list size of at least 2, all vertices v on the outer face of H ′

have |L′(v)| ≥ 1. All interior vertices v of H ′ have |L′(v)| ≥ 3 because if a vertex was

adjacent to P it is on the outer face of H ′.

Thus, we need only show that |L′(v)| = 1 requires v ∈ S∪{x′, y′}. Assume that there is

a vertex v 6∈ {x′, y′} with |L′(v)| = 1. Since |L′(v)| ≥ |L(v)| − 1, we must have |L(v)| = 2.
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This means that v is on the outer face of H (necessarily between y′ and x′ in clockwise

order, since P is precisely those vertices between y′ and x′ in counterclockwise order) and

has a neighbor w ∈ V (P ) (between x′ and y′ in clockwise order). Then vw is a chord of

H with x and y on opposite sides and v must separate x from y in H ′. Hence v ∈ S, as

claimed. ut

Proof of Lemma 4.2: Let G,L, x, and y be as in the hypothesis. Since adding edges

does not make G easier to color, we may assume that every bounded face is a triangle.

Note that any edges added to triangulate bounded faces do not change whether a vertex

is interior or not, so the hypotheses are still satisfied. We proceed by induction on the

number of vertices in G. The statement is easy for graphs with at most three vertices.

When G has more than three vertices, we have two cases:

Case 1: S 6= ∅. Let A be the block of G containing x. Let s be the vertex of S that is

in A. Let B be the component of G \ V (A) that contains y. Figure 4.2 depicts a typical

example of case 1), with three components H1, H2, and B of G \ V (A). In this example,

S consists of the three vertices named s, s2, s3.
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Color A by applying the induction hypothesis with s playing the role of y in the hy-

pothesis. For each component H of G \ V (A) other than B, Proposition 4.3 (applied with

P being the one-vertex in A that has neighbors in H) assures us that we can apply the in-

duction hypothesis to color H. To color B we replace s and apply the induction hypothesis

with s playing the role of x in the hypothesis.

When we combine these colorings, we get a proper path-coloring of G. Different colorings

are used on different pieces of G. These cannot interact except at the cut-vertices of G

contained in A. For a cut-vertex v not equal to s, we applied Proposition 4.3 to remove

the color used on v in A from the neighbors of v in other components of G − V (A). For

s, we note that Lemma 4.2 excludes any monochromatic paths through the distinguished

vertices. This means that if s is part of a monochromatic path in each of A and B, it is

an endpoint of both paths, and they can therefore be combined into one longer path.

Case 2: S = ∅. In this case, x and y are in the same block of G. Choose a color c ∈ L(x),

and choose a chordless path P in the following manner: if x = y or x ↔ y and c ∈ L(y),
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let P be the path consisting of x and y. Otherwise iteratively add vertices to the path P ,

beginning with x. Let v denote the current end of P . Let T be the set of vertices between

v and y (including y) on the outer face that have c in their color list and are neighbors of

v. If T 6= ∅, then append to P the vertex w of T that is closest to y on the outer face,

and repeat with v = w. Otherwise, let P end at v. By construction, P is a chordless path.

Figure 4.3 depicts an example of this case, with the resulting path P shown in bold.

Let z be the last vertex of P . Since P contains only vertices on the outer face of G, each

edge of P is either a chord or is on the outer face. Each chord v1v2 in P defines a lobe of

G, consisting of the cycle containing v1 and v2 and the vertices between them on the outer

face, and the vertices interior to that cycle. Let the lobes of G defined in this manner be

Hi, and let B be the subgraph induced by V (P ), the vertices from z to x (in clockwise

order) on the outer face, and the vertices interior to the resulting cycle. Figure 4.4 depicts

the subgraphs considered, for the example of Figure 4.3.

Now color all of V (P ) with c. For each lobe Hi, apply Proposition 4.3 with P ∩ H
41



•

•

•

1

x′ = y′ 12

1

• •

•

•

1 23 y′

12 x′

1

•

•

•

• •

•

••

123

13 x

1

1 1

1 z

342 y′

H1
H2

B

Figure 4.4

playing the role of P in the hypothesis, and then apply the induction hypothesis to the

resulting H ′, L′, x′ and y′ to get a proper path coloring. For B we must improve the

argument of Proposition 4.3 slightly, since we must set y′ = y instead of setting it to be

the next vertex after z. Otherwise, we may end up with df (y) = 2 after implying the

induction hypothesis. The conclusion of Proposition 4.3 still holds if we set y′ = y since

we have insured (by the choice of P ) that no vertex on the outer face between z and y has

c in its list, and thus that in L′ those vertices still have list size at least 2. Therefore, we

may also apply the induction hypothesis to B after removing P as in Proposition 4.3. As

in the first case, these colorings form a proper path coloring of G. ut

Note that Lemma 4.2 also proves directly that χ̂P (G) ≤ 2 if G is an outerplanar graph.

This proof yields an efficient algorithm for path 3-coloring. Jensen and Toft [14] note

that Thomassen’s proof [29] of the 5-choosability of planar graphs directly yields a simple

linear 5-coloring algorithm, in contrast to the quadratic algorithms derived from traditional

proofs of Heawood’s theorem [12] that all planar graphs are 5-colorable. In a similar way,
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Lemma 4.2 yields a linear path 3-coloring algorithm for planar graphs, where previous

proofs that planar graphs are path 3-colorable ([24] and [11]) lead to quadratic algorithms.
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5. Spot colorings

In this chapter we consider a different generalized coloring parameter. The spot chro-

matic number of a graph, χS(G), is the least number of colors with which the vertices

of G can be colored so that each color class induces a disjoint union of cliques. Unlike

the other generalized coloring parameters we have seen, this parameter is not monotone.

A subgraphs of a clique need not be a clique, so χS(H) may exceed χS(G) when H is a

subgraph of G; for example, χS(P3) = 2 > 1 = χS(K3).

Spot coloring was introduced by Grzegorz Kubicki [16] at a recent workshop on Discrete

Mathematics in Louisville in June, 1997. He proved that if G is a complete multipartite

graph with n vertices, then χS(G) ≤ min{y :
(
y
2

) ≥ n} − 1. He also noted that if G spot

k-chromatic, then 2G ∨K1 is spot (k + 1)-chromatic. This graph is not spot k-colorable,

since the vertex corresponding to K1 would be the center vertex of an induced P3 if it

received any color used in both copies of G. Kubicki asked if all planar graphs are spot 3-

colorable, and if there is a good upper bound for the spot chromatic number of an n vertex

graph. We gave a negative answer to the first question, noting that the third iteration of

Kubicki’s construction that increases the spot chromatic number is still planar when we

begin with G1 = K1 and set Gi = 2Gi−1 ∨K1 for i > 1. (see Figure 5.1).

5.1. Spot coloring the cartesian product of cliques

Another problem investigated during the workshop was to determine the spot chromatic

number of the cartesian product of cliques. When G is the cartesian product of two cliques

Km and Kn, this can be restated as a matrix labeling problem. Indeed, the matrix labelling

problem is perhaps even more natural than the spot coloring problem.
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Proposition 5.1.1. Represent Km Kn as a m by n matrix, where two elements are

adjacent if they are in the same row or in the same column. A coloring of the elements of

this matrix is a spot coloring of Km Kn if and only if no element has another element of

the same color in both its row and its column.

Proof: Such a configuration of three elements corresponds to an induced monochro-

matic P3, but P3 is not an induced subgraph of a disjoint union of cliques. Conversely, if

no such configuration exists, then elements with a common color occur in groups, all in

one row, or all in one column. Since no element appears in two such groups, the cliques

corresponding to such groups are disjoint, and the color classes therefore induce disjoint

unions of cliques. ut
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It is easy to spot color Kn Kn with n colors; simply color each row with a different

color. The greedy coloring algorithm, where we iteratively choose a color class as large

as possible among the uncolored vertices, does no better. It was briefly conjectured that

χS(Kn Kn) = n, but Chappell soon found a counterexample. He was able to spot color

K9 K9 with only 8 colors. This was improved by West, who showed χS(K6 K6) = 5.

This yields χS(Kn Kn) ≤ 5n
6 + O(1). Next, Jacobson [13] found a spot ( t

2 + 2)-coloring

of Kt Kt when t is even, and he proved that this is optimal.

Here we generalize Jacobson’s coloring to show that χS(Kmt Knt) ≤ mnt
m+n +2 min(m,n)

whenever m + n divides t. This is nearly optimal, in the sense that a spot coloring of

Kmt Knt must use at least mnt2

mt+nt−1 colors, and

lim
t→∞

mnt2

mt+nt−2
mnt
m+n + 2min(m,n)

= 1.

We first give an upper bound on the size of a color class in a spot coloring of Km Kn.

Proposition 5.1.2. If m and n are at least 2, then no color class in a spot coloring of

Km Kn can contain more than m + n− 2 vertices.

Proof: Consider a color class C. Partition C into two sets A and B by placing a vertex

v into A if there is another vertex of C in v’s column. Otherwise, put v into B. No vertex in

A has another vertex of the same color in its row, by Proposition 5.1.1 (see Figure 5.2). No

vertex in B has another vertex of the same color in its column, by the choice of A. If A has

vertices in c columns and B has vertices in r rows, then |A| ≤ m−r and |B| ≤ n−c. If A or

B is empty, then |C| ≤ max{m, n}, otherwise |C| = |A|+ |B| ≤ m+n−(r+c) ≤ m+n−2.

ut
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5.2. Jacobson’s construction

Jacobson’s construction of a spot ( t
2 +2)-coloring of Kt Kt when t is even is illustrated

in Figure 5.3. There are two types of color classes, “stairstep”, represented by shades

of gray, and “diagonal”, represented by the numbers 1 and 2. All stairstep classes are

isomorphic. Since each element of such a class has neighbors of the same class only in its

row or only in its column, each such class induces a disjoint union of cliques. Also, classes

1 and 2 are independent sets, that is, tK1.

5.3. The construction for Km Kn

Theorem 5.3.1. If m + n divides t, then χS(Kmt Knt) ≤ mnt
m+n + 2min(m,n)

Proof: Assume, without loss of generality, that m ≤ n. As in Jacobson’s construction,

we use two types of color classes, “stairstep” and “diagonal” (see Figure 5.4). Each step

in a stairstep class consists of a horizonal step of nt
m+n − 1 elements and a vertical strip of

mt
m+n − 1 elements. The element to the right of the horizontal strip is the element below
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the vertical strip, so locally one diagonal is skipped. In each class there are m + n steps.

As in Jacobson’s construction, each stairstep class induces a disjoint union of cliques, but

we must show that they fit together correctly when shifted up and to the left, as shown in

the diagram. We think of the matrix as occupying points (1,1) to (nt,mt) of the integer

lattice. Consider the color B that starts a horizontal step in the lower left corner. The

position cyclically to the left of this is (nt, 1), the lower right corner. After mnt
m+n shifts, it

is at position (nt− mnt
m+n , mnt

m+n +1). This is precisely one step above (n nt
n+m , n mt

n+m ), which

is the end of the nth vertical step in the original color class B, indicated in black. We have
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thus fit mnt
m+n stairstep classes into the matrix without overlaps, but there are still elements

of the matrix left uncolored. Examine a column of the partially colored matrix. There

are repeated copies of the following formation: A vertical strip of mt
m+n − 1 elements of the

same color, followed by an uncolored element, followed by nt
m+n − 1 elements each from

a different color horizontal strip, followed by another uncolored element. Each formation

uses ( mt
m+n −1)+1+( nt

m+n −1)+1 = t elements. There are thus m copies of the formation

in each column and therefore 2m uncolored elements in each column. We use an additional

2m color classes to color these uncolored elements, using every color class in each column.
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Since each class is used only once in each column, it is used on a disjoint union of cliques.

We have now used mnt
m+n + 2m = mnt

m+n + 2 min(m,n) colors to spot color Km Kn. ut

Theorem 5.3.1 is much better that the trivial bound χS(Km Kn) ≤ min(m,n). For

example, it shows that χS(K30 K60) ≤ 22. By Proposition 5.1.2 at least d1800/88e = 21

colors are needed.

Proposition 5.1.2 shows that if we fix the ratio of the sizes of the cliques at m
n but let

their sizes go to infinity, our construction is nearly optimal, since

lim
t→∞

mnt2

mt+nt−2
mnt
m+n + 2min(m,n)

= 1.
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6. Observability and set-balanced k-edge-coloring

Černý, Horňák and Soták [5] studied a restricted form of edge-coloring. They defined

the observability of a graph G, written obs(G), to be the least number of colors in a proper

edge-coloring of G such that the color sets at vertices of G (sets of colors of their incident

edges) are pairwise distinct. Here we introduce a generalization of observability.

A set-balanced k-edge-coloring of a graph G is a proper k-edge-coloring of G such that

for each vertex degree d each d-set of colors is used about equally often. More precisely,

each d-set appears at bnd/
(
k
d

)c or dnd/
(
k
d

)e vertices, where nd is the number of vertices

of degree d. For example, a d-regular graph G with n vertices has a set-balanced k-edge-

coloring if the edges of G can be properly colored so that each set of d colors appears

at bn/
(
k
d

)c or dn/
(
k
d

)e vertices. When k is large enough, the number of d-sets becomes

so large that bnd/
(
k
d

)c = 0 for each d, and the question of whether G has a set-balanced

k-edge-coloring becomes the question of whether the observability of G is at most k.

Černý et. al determined the observability of complete graphs, paths, cycles, wheels, and

complete multipartite equipartite graphs. We generalize these results to determine exactly

the values of k such that graphs from these classes have set-balanced k-edge-colorings. For

many of these classes, set-balanced k-edge-colorings exist if and only if k is at least the

observability. We also prove that certain 2-regular graphs with n vertices have observability

equal to min{j :
(

j
2

) ≥ n}. Horňák conjectured [21] that this true for all 2-regular graphs.

This would say that the lower bound on observability arising from the trivial counting

argument is the correct value for these graphs. Černý, Horňák and Soták [5] proved this

for cycles, and Steiner triple systems provide examples for the special case in which G is a

disjoint union of 3-cycles and n is congruent to 0 or 1 modulo 6.
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6.1. Special classes

We first list trivial necessary and trivial sufficient conditions for the existence of set-

balanced k-edge-colorings.

Lemma 6.1.1. If G has a set-balanced k-edge-coloring, then k ≥ χ′(G) ≥ ∆(G).

If G is d-regular and χ′(G) = d, then G has a set-balanced d-edge-coloring.

If k ≥ obs(G), then G has a set-balanced k-edge-coloring.

Proof: A set-balanced k-edge-coloring must be a proper edge-coloring, so the first

statement holds. In a proper d-edge-coloring of a d-regular graph the single d-set of colors

appears at every vertex, so this is a set-balanced k-edge-coloring, and proves that the

second statement holds. Any coloring showing obs(G) ≤ k is a set-balanced k-edge-coloring

of G, since those color sets that appear at vertices do so at most once. All others appear

zero times, so the third statement follows. ut

We begin with some easy examples.

Example. Wn, the wheel with n vertices.

Černý et al. [5] showed for n ≥ 5 that the observability of the n vertex wheel Wn =

K1∨Cn−1 is n−1. Since ∆(Wn) = n−1, Lemma 6.1.1 implies that Wn has a set-balanced

k-edge-coloring if and only if k ≥ n− 1. ut

Example The clique Kn.

Černý et al. [5] showed for n ≥ 3 that obs(Kn) = 2dn+1
2 e − 1. When n is odd,

χ′(Kn) = n. Thus Lemma 6.1.1 implies, for odd n, that Kn has a set-balanced k-edge-

coloring if and only if k ≥ n. The even case is slightly more interesting. When n is

even, Kn is (n− 1)-edge-colorable (using rotations of Figure 6.1), so it has a set-balanced
52



•
•

•

•

••

•

•

•

•

Figure 6.1

(n − 1)-edge-coloring. The next proposition implies that it does not have a set-balanced

n-edge-coloring. Thus, for even n, Kn has a set-balanced k-edge-coloring if and only if

k = n− 1 or k ≥ n + 1. ut

Proposition 6.1.2. Let G be a regular graph of degree d with n vertices. If (d + 1) does

not divide n, then G does not have a set-balanced (d + 1)-edge-coloring.

Proof: Consider a set-balanced (d + 1)-edge-coloring of G. For each color i, let αi

denote the number vertices at which i does not appear. Every αi has the same parity as

n, since each edge of color i is incident to exactly two vertices. However, the set of colors

used at a vertex is identified by which color is missing, so the property of set-balancing

requires that the numbers {αi} differ by at most 1. Since every αi has the same parity, we

must actually have αi = c for all i and some constant c. We then have (d + 1)c = n. ut

Černý et. al [5] made the observation that there is a bijection between edge-colorings

of Cn that demonstrate obs(Cn) ≤ k and closed trails of length n in Kk. Similarly, there
53



is a bijection between edge-colorings of Pn that demonstrate obs(Cn) ≤ k and non-closed

trails of length n in Kk. We generalize these observations.

Proposition 6.1.3. There is a bijection between set-balanced k-edge-colorings of Cn and

closed walks of length n on Kk that use each edge bn/
(
k
2

)c or dn/
(
k
2

)e times.

Proof: Edges of Cn correspond to the vertices of the walk, which denote colors. The

edges of the walk can be viewed as pairs of successive colors on Cn. The requirement

that every edge of Kk is used bn/
(
k
2

)c or dn/
(
k
2

)e times in the walk corresponds to the

requirement that pairs of colors at the vertices of Cn must appear bn/
(
k
2

)c or dn/
(
k
2

)e

times. ut

To state exactly when Cn has a set-balanced k-edge-coloring, we also need the following

simple proposition, proved in [5].

Proposition 6.1.4. If k is odd, then Kk has a closed trail of length l if and only if

3 ≤ l ≤ (
k
2

)− 3 or l =
(
k
2

)
. If k is even, then Kk has a closed trail of length l if and only

if 3 ≤ l ≤ (
k
2

)− k
2 .

Because there are
(
k
2

)
2-sets from a set of k colors, a set-balanced k-edge-coloring of a

2-regular graph of order n must use each 2-set at bn/
(
k
2

)c or bn/
(
k
2

)c + 1 vertices. Note

that q in the next theorem is dn/
(
k
2

)e − 1.

Theorem 6.1.5. Let G be a cycle of length n. Write n = q
(
k
2

)
+ r, where q and r are

integers and 1 ≤ r ≤ (
k
2

)
. Then G has a set-balanced k-edge-coloring if and only if:

1) k is odd and r =
(
k
2

)
or 3 ≤ r ≤ (

k
2

)− 3,

2) k is even, q is even, and 3 ≤ r ≤ (
k
2

)− k
2 , or
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3) k is even, q is odd, and k
2 ≤ r ≤ (

k
2

)− 3.

Proof: In each case listed, we show that there is a connected even multigraph on k

vertices with n edges in which each of the
(
k
2

)
edges has multiplicity q or q + 1. Every

connected even multigraph has a closed Eulerian trail, which corresponds to a closed walk

in Kk using each edge q or q + 1 times. By Proposition 6.1.3 this yields a set-balanced

k-edge-coloring of G.

In cases 1 and 2, Proposition 6.1.4 guarantees the existence of a closed trail T of length

r. We begin with q copies of each edge and add an additional copy of each edge in T .

Each vertex then has q(k − 1) edges, plus some additional edges from T . Since T passes

through each vertex an even number of times, and q(k − 1) is even, this is an even graph.

When q ≥ 1 it is connected, since there is at least one copy of every edge, and when q = 0

it is exactly T and thus is still connected.

In case 3, Proposition 6.1.4 guarantees the existence of a closed trail T of length
(
k
2

)−r.

We again begin with q copies of each edge. In this case, however, we add an additional

copy of the r edges not used in T to reach a total of n edges. Since k is even, each vertex

is incident to an odd number of edges not on T . Also, q(k−1) is odd, so each vertex again

has even total degree. Since q is odd, there is at least one copy of every edge, so the graph

is connected.

To prove that the condition is necessary, note that if there is a set-balanced k-edge-

coloring of Cn, then Proposition 6.1.3 yields a closed walk of length n on Kk with every

edge used q or q + 1 times. Deleting q copies of each edge leaves a graph G with r edges

on k vertices.

If k is odd or q is even then G is an even graph. Choosing one vertex from each
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component of G and merging them into a single vertex inheriting all the incident edges

leaves us with a connected even graph with r edges on no more than k vertices. Since

such a graph has a (closed) Eulerian trail of length r, Proposition 6.1.4 implies that r is

as specified.

If k is even and q is odd, then G is not an even graph, but G is then an even graph

having
(
k
2

)− r edges. Merging one chosen vertex from each component of G leaves us with

a connected even graph. Since such a graph has a (closed) Eulerian trail, Proposition 6.1.4

again implies that r is as specified. ut

A statement similar to Proposition 6.1.3 can be made about paths Pn, but we must

specify non-closed walks so that the edges at the ends of the path receive different colors.

Since Pn has n− 1 edges, we must find non-closed walks with n− 1 vertices, that is, walks

of length n− 2.

Proposition 6.1.6. There is a bijection between set-balanced k-edge-colorings of Pn and

non-closed walks of length n− 2 on Kk that use each edge bn/
(
k
2

)c or dn/
(
k
2

)e times.

Proof: Edges of Pn correspond to the vertices of the walk, which denote colors.

Edges of the walk can be viewed as pairs of successive colors on Pn. Endpoints of the walk

correspond to the pendant edges of Pn. The requirement that every edge of Kk is used c

or c+1 times in the walk corresponds to the requirement that each 2-set of colors appears

at bn/
(
k
2

)c or dn/
(
k
2

)e of the degree 2 vertices of Pn. As noted, the requirement that the

trail be non-closed corresponds to the requirement that the two edges at the ends of Pn

get different colors. ut

Again, we need a simple proposition from [5].
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Proposition 6.1.7. If k is odd, then Kk has a non-closed trail of length l if and only

if l ∈ [1,
(
k
2

) − 1]. If k is even, then Kk has a closed trail of length l if and only if

l ∈ [1,
(
k
2

)− k
2 + 1].

Theorem 6.1.8. Let G be a path of length n. Write n− 2 = q
(
k
2

)
+ r, where q and r are

integers and 1 ≤ r ≤ (
k
2

)
. Then G has a set-balanced k-edge-coloring if and only if:

1) k is odd and 1 ≤ r ≤ (
k
2

)− 1,

2) k is even, q is even, and 1 ≤ r ≤ (
k
2

)− k
2 + 1, or

3) k is even, q is odd, and k
2 − 1 ≤ r ≤ (

k
2

)− 1.

Proof: In all cases we show that there is a connected multigraph G on k vertices with

n − 2 edges such that 1) each of the
(
k
2

)
edges has multiplicity q or q + 1, and 2) exactly

two vertices of G have odd degree. Every such multigraph has an Eulerian trail of length

n− 2 beginning at one vertex with odd degree and ending at the other, and this yeilds (by

Proposition 6.1.3) a set-balanced k-edge-coloring of G.

In cases 1 and 2, Proposition 6.1.7 guarantees the existence of a non-closed trail T of

length r. We begin with q copies of each edge and add an additional copy of each edge in

T . Each vertex then has q(k−1) edges, plus some additional edges from T . Since T passes

through all but two vertices an even number of times, and q(k − 1) is even, all but two

vertices of this multigraph have even degree. When q ≥ 1 it is connected, since there is at

least one copy of every edge, and when q = 0 it is exactly T and thus is still connected.

In case 3, Proposition 6.1.7 guarantees the existence of a non-closed trail T of length

(
k
2

) − r. We again begin with q copies of each edge. In this case, however, we add an

additional copy of the r edges not used in T to reach a total of n edges. Since k is even, all

but two vertices are incident to an odd number of edges not on T . Also, q(k − 1) is odd,
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so again all but two vertices of this multigraph have even degree. Since q is odd, there is

at least one copy of every edge, so the graph is connected.

To prove that the condition is necessary, note that if there is a set-balanced k-edge-

coloring of Pn, then Proposition 6.1.6 yields a non-closed walk of length n− 2 on Kk with

every edge used q or q + 1 times. Deleting q copies of each edge leaves a graph G with r

edges on k vertices.

If k is odd or q is even, then G has exactly two vertices with odd degree. Note that

the two vertices with odd degree must be in the same component. Thus, choosing one

vertex from each component of G and merging them into a single vertex inheriting all the

incident edges leaves us with a connected graph with r edges on no more than k vertices

where exactly two vertices have odd degree. Since such a graph has a non-closed Eulerian

trail of length r, Proposition 6.1.7 implies that r is as specified.

If k is even and q is odd, then G has exactly two vertices with even degree, but G

(which has
(
k
2

)− r edges) is then a graph with exactly two vertices of odd degree. Merging

one chosen vertex from each component of G leaves us with a connected graph where all

but two vertices have even degree. Since such a graph has a non-closed Eulerian trail,

Proposition 6.1.7 again implies that r is as specified. ut

Let Kp×q denote the complete multipartite graph with p parts of q vertices. These are

precisely the regular complete multipartite graphs, with degree q(p−1). Horňák and Soták

[22] proved that obs(Kp×q) = q(p − 1) + 2. Lemma 6.1.1 thus implies that Kp×q has a

set-balanced k-edge-coloring for all k ≥ q(p− 1) + 2 and for no k < q(p− 1) = ∆(Kp×q).

The following two propositions complete the analysis by determining when Kp×q has set-

balanced k-edge-colorings for k ∈ {q(p − 1), (q(p − 1) + 1}. We write G[H] to denote the
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graph formed by replacing every vertex of G by a copy of H with the same neighborhood.

Note that Kp×q is exactly Kp[qK1].

Proposition 6.1.9. The complete multipartite graph Kp×q can be properly q(p−1)-edge-

colored if and only if pq is even.

Proof: We repeatedly use the fact that if G1 can be decomposed into copies of G2

and G2 can be decomposed into copies of G3 then G1 can be decomposed into copies of

G3. Also, if G decomposes into copies of F , then G[H] decomposes into copies of F [H].

If p is even, consider Kp×q as Kp[qK1]. Since Kp has a decomposition into perfect

matchings, Kp×q has a decomposition into copies of p
2K2[qK1], which equals p

2Kq,q. Since

complete bipartite graphs have decompositions into perfect matchings, so do disjoint unions

of such graphs. Transitivity of decomposition now completes the proof.

If p is odd but q is even, then we reduce the problem to providing a decomposition of

Kp×2 into perfect matchings. If we split each partite set of Kp×q into two equal size parts,

and collapse the complete bipartite graphs occuring between these new parts into edges,

we obtain Kp×2. In other words, Kp×q = Kp×2[ q
2K1]. If we can find a decomposition

of Kp×2 into perfect matchings, then Kp×q decomposes into copies of pK2[ q
2K1]] which

equals pK q
2 , q

2
. Decomposition of K q

2 , q
2

into matchings and transitivity of decomposition

then complete the proof.

It is well known that Kp has a decomposition into spanning cycles when p is odd, as illus-

trated by rotations of Figure 6.2. Thus Kp×q = Kp[2K1] can be decomposed into copies of

Cp[2K1]. If we represent Cp[2K1] with vertices c1, c2, . . . , cp and c′1, c
′
2, . . . , c′p where indices

are treated modulo p, then we have edges ci ↔ ci+1, ci ↔ c′i+1, c
′
i ↔ ci+1, and c′i ↔ c′i+1.

The cycles (c1, c2, . . . , cp−1, cp, c
′
p−1, c

′
p−2, . . . , c′1, c

′
p) and (c1, c

′
2, c3, . . . , c′p−1, c

′
p, cp−1,
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c′p−2, . . . , c2, c
′
1, cp) form a decomposition of Cp[2K1] into two even cycles, as shown in

Figure 6.3. Since even cycles have a decomposition into perfect matchings, transitivity of

decomposition again completes the proof. ut

Proposition 6.1.10. The complete multipartite graph Kp×q has a set-balanced (q(p −

1) + 1)-edge-coloring if and only if p = 1 or q = 1 and p is odd.

Proof: When p = 1 the graph has no edges, and the statement holds trivially. When
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q = 1 the graph is a clique, and the result has already been shown. When p and q are both

at least 2, we apply Proposition 6.1.2. It suffices to show that (p− 1)q + 1 divides pq only

if p = 1 or q = 1. If (pq − q + 1) divides pq, then pq/(pq − q + 1) is an integer, but then

(q − 1)/(pq − q + 1) is also an integer. Thus q − 1 = 0 or q − 1 ≥ pq − q + 1; the latter

implies p ≤ (2 − 2/q), which contradicts p ≥ 2. By Proposition 6.1.2, Kp×q thus has no

((p− 1)q + 1)-edge-coloring. ut

6.2. Observability of regular graphs

Černý, Horňák and Soták [5] conjectured the following:

Conjecture 6.2.1. If
(
k−1
d−1

)
is even, then obs(G) = k for every d-regular graph with

(
k
d

)

vertices.

The converse is easy. Since G has
(
k
d

)
vertices, we require each d-set of colors to appear

at exactly one vertex. Thus, each color appears at
(
k−1
d−1

)
vertices. This must be even,

since each edge is incident to two vertices. We propose a generalization, motivated by the

following example.

Example. The cube Q3. The cube Q3 has observability 6, although
(
5
3

)
= 10 > 8.

Horňák originally showed this by case analysis [23], but we give a short argument for the

more general statement that no 3-regular 8-vertex graph has observability 5. Suppose

some such graph has a set-balanced 5-edge-coloring. Each color appears 6 times in the ten

3-color subsets of five colors. If we choose two 3-sets to leave out, then at least one color

in each of those 3-sets will not be in the other. These colors then appear exactly 5 times

in the 8 remaining subsets, but as noted above, each color appears at an even number of

vertices in every edge-coloring of a graph. ut

61



•

•

••

•

•

•

••

•

Figure 6.4.

Conjecture 6.2.2. Let G be a d-regular graph with n vertices, and let k be the smallest

integer such that
(
k
d

) ≥ n. Then obs(G) = k if and only if there exists a family of n

d-subsets of [k] such that each color appears in an even number of sets in the family.

As in Conjecture 6.2.1, the condition is necessary for obs(G) = k, since we must be

able to choose color sets for the vertices such that each color is used at an even number of

vertices.

If Conjecture 6.2.2 is true, then determining the observability of a regular graph is

actually a problem in design theory, and the structure of the graph plays no part. The

obvious extension of the conjecture to set-balanced k-edge-colorings is false. If we drop

the condition that
(
k
d

) ≥ n and require a set-balanced k-edge-coloring of G rather than

obs(G) = k, then every regular graph with edge-chromatic number greater than the degree

is a counterexample. For example, consider the Peterson graph, shown in Figure 6.4. In a

3-edge-coloring of this graph, each color class must be a perfect matching, but if any perfect

matching is removed, the remainder consists of two 5-cycles, and is not 2-edge-colorable.

The results of Černý et. al on the observability of cycles verify that the conjecture is
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true for connected graphs that are 2-regular. There are few further results, even for the

seemingly easy case of Conjecture 6.2.1 for disconnected 2-regular graphs. For example, let

G be a graph consisting of m disjoint cycles with lengths α1, α2, . . . , αm, where
∑m

i=1 αi =

(
k
2

)
. The techniques of Section 6.1 allow us to restate the problem: it suffices to decompose

Kk into closed trails of lengths α1, α2, . . . , αm. This can only be done when k is odd, since

when k is even, each vertex of Kk has odd degree. This problem has been well studied in

the literature when the closed trails are all required to be cycles of the same length; the

survey article by Lindner and Rodger [18] lists many results.

Example. Steiner triple systems. A Steiner triple systems on n elements is a set of

triples from [n] such that each pair of elements appears together in exactly one triple.

Steiner triple systems on n elements exist whenever n ≡ 1 (mod 6) or n ≡ 3 (mod 6).

We can find a decomposition of Kn into 3-cycles whenever a Steiner triple system on n

elements exists. Each triple yields a 3-cycle on the vertices of Kn, and each edge of Kn

then occurs in one triple. ut

We provide theorems to settle two other cases of Conjecture 6.2.1. The first is suggested

by the well-known fact that Kn can be decomposed into paths of lengths 1, 2, . . . , n − 1.

When n is odd, an Eulerian circuit of Kn yields a decomposition of Kn into trails of

arbitrary lengths, but it does not yield closed trails of those lengths.

Theorem 6.2.3. For odd n ≥ 3, let α1 = 3 and αi = i + 1 for 2 ≤ i ≤ n− 2. Then Kn

can be decomposed into pairwise edge-disjoint closed trails of lengths α1, α2, . . . , αn−2.

Proof: We inductively form a family Fn consisting of n− 3 closed trails with lengths

α2, α3, . . . , αn−2 such that Fn together with the cycle (1, n, n− 1) uses every edge of Kn

63



exactly once. Since (1, n, n− 1) has length α1 = 3, this is the required decomposition.

We begin with F3 = ∅, since the cycle (1,3,2) uses every edge of K3. Suppose n > 3.

Given the family Fn−2 we specify two additional closed trails of lengths n− 2 and n− 1.

We use all the new edges between {n− 1, n} and {2, ..., n− 2}; there are 2n− 6 of these.

We also use the edges of the previous special cycle (1, n−2, n−3); these bring the total to

2n− 3 edges, as desired, and this cycle will be replaced by (1, n, n− 1). Because of these

three special edges, we handle n− 2 and n− 3 specially and define S = {2, ..., n− 4}.

Each element of S occurs in exactly one of the two trails of lengths n − 2 and n − 1,

occuring once between n and n−1 to contribute its two edges to those vertices. We denote

the elements of S by x’s below; their order is unimportant. There are (n − 5)/2 such

elements in each trail. When n ≡ 1 (mod 4), the number of x’s in each trail is even, so

the edges from n to {n− 3, n− 2} occur in the same trail, and similarly for n− 1. When

n ≡ 3 (mod 4), the number of x’s in each trail is odd, so the edges from n to {n−3, n−2}

occur in different trails and similarly for n− 1. In each case, these two trails complete the

required decomposition.

When n ≡ 1 (mod 4), the two closed trails are:

(n− 5)/4 groups

(n− 3, n− 2, n,
︷ ︸︸ ︷
x, n− 1, x, n, . . . ,

︷ ︸︸ ︷
x, n− 1, x, n)

(n− 5)/4 groups

(n− 2, 1, n− 3, n− 1,
︷ ︸︸ ︷
x, n, x, n− 1, . . . ,

︷ ︸︸ ︷
x, n, x, n− 1).

When n ≡ 3 (mod 4), the two closed trails are:

(n− 7)/4 groups
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(n− 3, n− 2, n, x, n− 1,
︷ ︸︸ ︷
x, n, x, n− 1, . . . ,

︷ ︸︸ ︷
x, n, x, n− 1)

(n− 7)/4 groups

(n− 2, 1, n− 3, n, x, n− 1,
︷ ︸︸ ︷
x, n− 1, x, n, . . . ,

︷ ︸︸ ︷
x, n− 1, x, n).

ut

Our next theorem about decompositions is motivated by the example of Steiner triple

systems. We wish to show that whenever n is odd, the graph on
(
n
2

)
vertices consisting of

as many cycles as possible has observability n. Steiner triple systems decompose Kn into

triangles when n ≡ 1 or 3 (mod 6). When n ≡ 5 (mod 6), this is impossible since
(
n
2

) ≡ 1

(mod 3). In this case we show how to decompose Kn into triangles and one four-cycle.

We will need the following theorem of Baker [4]. We will use only the case of the theorem

where 6a + 3 and a + k are relatively prime, in which case the decomposition consists of

triangles and a single spanning cycle.

Theorem 6.2.4. The clique K6a+3 can be decomposed into triangles and the disjoint

union of gcd(6a+3, a+k) cycles of length (6a+3)/ gcd(6a+3, a+k) where 1 ≤ k ≤ 2a+1

if either

1) k is odd and a ≡ 0 or 1 (mod 4), or

2) k is even and a ≡ 2 or 3 (mod 4).

Lemma 6.2.5. For each positive integer a, there exists a positive integer k fulfilling the

hypothesis of Theorem 6.2.4 such that 6a + 3 and a + k are relatively prime.

Proof: When a ≡ 2 (mod 4), simply take k so that a + k is a power of 2 and

a + 1 ≤ a + k ≤ 3a + 1. When a ≡ 3 (mod 4) take k = a+1
2 so that gcd(6a + 3, a + k) =
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gcd(6a +3, 3a+1
2 ) = 1 since (6a + 3)− 43a+1

2 = 1. When a ≡ 0 or 1 (mod 4) let k = 2a +1

so that gcd(6a + 3, a + k) = gcd(6a + 3, 3a + 1) = 1 since (6a + 3)− 2(3a + 1) = 1. ut

Theorem 6.2.6. If n ≡ 5 (mod 6), then Kn can be decomposed using triangles and one

4-cycle.

Proof: Decompose Kn−2 into triangles and a single (n− 2)-cycle using Lemma 6.2.5

and Theorem 6.2.4. Let the (n−2)-cycle be (v1, v2, . . . , vn−2). Introduce two new vertices

x and y and form a decomposition of Kn using the triangles from the decomposition of

Kn−2 and the triangles (x, v2i+1, v2i+2) and (y, v2i+2, v2i+3) for 0 ≤ i ≤ n−5
2 . The 4-cycle

(x, vn−2, v1, y) completes the decomposition.

Note that we have constructed k to be odd when a ≡ 0 or 1 (mod 4) and even when

a ≡ 2 or 3 (mod 4). ut
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7. Twisted Hypercubes

As described in Chapter 1, we seek k-regular graphs of order 2k with small diameter. We

consider the “twisted hypercubes”, defined recursively by Slater [28] (and independently

others) as follows. The 1-vertex graph K1 is a twisted hypercube of dimension 0. To

construct a twisted hypercube of dimension k ≥ 1, take any two twisted hypercubes of

dimension k − 1 and connect them with any matching. We define Gk to be the set of

all hypercubes of dimension k. The classical k-dimensional hypercube Qk belongs to Gk

according to its usual construction. Let Q0 = K1. For k ≥ 1, construct Qk by connecting

two copies of Qk−1 using the matching that connects the two copies of each vertex.

In this chapter we describe a construction that, given a twisted hypercube of dimension

k and radius r, creates a twisted hypercube of dimension 2k+r and radius no more than 2r.

By iterating this construction, we obtain twisted hypercubes of dimension k and diameter

approximately 4 k
lg k . This is within a constant of best possible, since k

lg k is obtainable as

a lower bound by a simple counting argument.

Figure 7.1 contrasts T1, a twisted hypercube of dimension 3, with Q3, the classical

hypercube of dimension 3. When constructing the twisted hypercube of dimension 2 that

forms the back face of T1, note that we did not connect 100 to 110 and 101 to 111 as we

must when constructing a classical hypercube. Instead, we have joined 100 to 111 and 101

to 110. Because of this “twist” the diameter of T1 is 2, while Q3 has diameter 3.

We first show that the radius (and thus the diameter) of any k-regular graph with 2k

vertices is at least k
lg k − 1. We simply count the number of vertices a particular vertex v

can reach in i steps. The only vertex that has distance 0 from v is v. There are k neighbors

of v, these all have distance 1 from v. Each of these k vertices is adjacent to k vertices, thus
67



• •

• •

• •

• •

000 001

010 011

100 101

110 111

Q3

• •

• •

• •

• •

000 001

010 011

100 101

110 111

T1

Figure 7.1

there are at most k2 vertices that have distance 2 from v. In general, there are no more

than kd vertices at distance d from v, and thus no more than 1+k+k2 + · · ·+kd = kd+1−1
k−1

having distance at most d from v. If a graph with 2k vertices has diameter d, then we have

2k ≤ kd+1−1
k−1 . We thus have 2k(k − 1) < kd+1 so d ≥ k+lg(k−1)

lg k − 1 ≥ k
lg k − 1.

We next develop the notation we use to specify twisted hypercubes.

We use the set {0, 1}k of binary vectors of length k as the vertex set of a twisted

hypercube G of dimension k. Suppose that G is formed from two twisted hypercubes,

say G1 and G2, of dimension k − 1. We get vertex labels for G by prepending a 0 to the

vertices of G1, and prepending a 1 to the vertices of G2. We must describe the edges of the

matching connecting G1 and G2. Each such edge connects vertices with different leftmost

bits. As we travel across the matching (say, from G1 to G2) we induce a permutation on

the vertices of the k − 1 dimensional hypercubes, that is, on the vectors with k − 1 bits.

This permutation is part of the specification of G.

Now consider how G2 was constructed. Two twisted hypercubes of dimension k − 2,

say, H1 and H2, were connected by a matching. To describe G, we must also describe the
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matching that was used to connect H1 and H2. Edges from this matching must stay within

G2, that is, they can not change the leftmost bit. They must, however, change the second

bit, this corresponds to moving from H1 to H2. The matching will thus be described by

fixing the first bit, toggling the second bit, and performing a permutation on the vectors

described by the remaining k − 2 bits. Note that this permutation can be different in G1

and G2, that is, that the permutations described by matchings that fix the first bit and

toggle the second bit can depend on the first bit.

We are now ready to give a precise definition. We will denote concatenation of vectors

by “:” and length (number of coordinates) by l(). Given a vector ~v = (v1, v2, . . . , vk), we

define ~vi,j = (vi, vi+1, . . . , vj) for 1 ≤ i ≤ j ≤ k. Edges of G corresponding to a matching

connecting two subgraphs of dimension i are described by associated permutations σG
~a ,

where l(~a) = k − 1 − i and σG
~a is a permutation of the binary vectors with length i. The

2k−1−i different vectors of length k − 1− i correspond to the 2k−(i+1) different subgraphs

of dimension i + 1. In each such subgraph we may choose a different matching connecting

the two subgraphs of dimension i; σG
~a is the permutation induced by that matching. Given

a vertex ~v of G and a dimension j with (1 ≤ j ≤ k), define fG,j(~v) (the neighbor of ~v along

the jth incident edge) as follows:

fG,j(~v) =

{
~v1,j−1 : 1 : σG

~v1,j−1
(~vj+1,k) if vj = 0, or

~v1,j−1 : 0 : (σG
~v1,j−1

)−1(~vj+1,k) if vj = 1.

Note that fG,j(~v) always changes the jth bit of ~v. In what follows we will always choose

σ to be an involution, so that fG,j(~v) = ~v1,j−1 : (1 − vj) : σG
~v1,j−1

(~vj+1,k). The complete

specification of G consists of a permutation σG
~u for each ~u with 0 ≤ l(~u) < k − 1; the

permutation describes the mates in dimension l(~u) + 1 for vertices with prefix ~u.
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Example. The standard hypercube Qk. The standard hypercube Qk is the twisted

hypercube of dimension k with associated permutations σQk

~a equal to the identity permu-

tation for all ~a. ut

For any k and any i with 0 ≤ i ≤ k, define τi(v1, v2, . . . , vk) = ~v1,i−1 : (1− vi) : ~vi+1,k.

In other words, τi is the mapping that toggles the ith bit of ~v. Also, let τ0(~v) = ~v. Note

that if σG
~u = τi where l(~u) = j, then the map across dimension j + 1 within the subcube

of dimension k − j that fixes the first j bits of ~u toggles both bits j + 1 and j + 1 + i.

Example. T1, a twisted hypercube of dimension 3 and radius 2. The twisted hypercube

T1, as shown in Figure 7.1 is defined by using the identity for all associated permutations

except that σT1
1 (~v) = τ1(~v). The matching among vertices with first coordinate 1 thus

toggles both the second and third bits. Note that the subscript on Tn is the logarithm of

its radius. We will construct a sequence of twisted hypercubes with exponentially growing

radius but even faster-growing dimension. ut

7.1. The construction

Given a twisted hypercube H ∈ Gk with radius r, with ~0 as the center vertex), we

construct a twisted hypercube G ∈ G2k+r that we will show has radius at most 2r, again

with ~0 as the center vertex. Since vertices in G have length 2k + r, we must specify σG
~u (~v)

for each ~u,~v with l(~u) + l(~v) = 2k + r − 1.

When 0 ≤ l(~u) < k, partition ~v by letting the first k − 1 − l(~u) bits be ~c and the last

k + r bits be ~d. Define σG
~u (~v) = σH

~u (~c) : ~d. For 0 ≤ j < k this makes fG,j(~v) act like fH,j

on the first k bits of ~v and leave the rest unchanged.

When k ≤ l(~u) < 2k, partition ~u by letting the first k bits be ~a and the last l(~u) − k
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bits be ~b. Also partition ~v by letting the first k− 1− l(~b) bits be ~c and the last r bits be ~d.

Define σG
~u (~v) = σH

~b
(~c) : τdH(0,~a)(~d). For k ≤ j < 2k this makes fG,j leave the first k bits

of ~v unchanged, while it acts like fH,j−k on the next k bits, and (possibly) toggles one bit

from the last r. The bit toggled depends on how far ~a is from ~0 in H.

When 2k ≤ l(~u) < 2k + r, define σG
~u be the identity permutation. For 2k ≤ j < 2k + r

this makes fG,j change only the jth bit, that is, it acts like fQr,j−2k on the last r bits,

while leaving all others unchanged.

Example T1 is the twisted hypercube obtained from T0 = K1 by this construction. The

only twisted hypercube of dimension 1 is K1, its only associated permutation is the identity.

Thus, only the second rule above results in an associated permutation for T1 that is not the

identity. That rule says that σT1
1 (~v) = τ1(~v), while σT1

0 (~v) = τ0(~v), which is the identity.

This is precisely our previous definition of T1. ut

Proposition 7.1.1. If H has radius r, then the radius of G obtained from H by the

above construction is at most 2r.

Proof: We present an algorithm to travel from a given vertex ~v to ~0 in no more than

2r steps.

Write ~v = ~w1 : ~w2 : ~w3 where l(~w1) = l(~w2) = k and l(~w3) = r. To begin, set

~a = ~w1,~b = ~w2, and ~c = ~w3. While constructing a path to the origin, we let ~a : ~b : ~c

represent the current vertex.

By the notes about fG,j above, there are three types of operations we can perform.

There are k incident edges of the first type, k of the second type, and r of the third type.

We can 1) treat ~a as a vertex of H, 2) treat ~b as a vertex of H while toggling the dH(~0,~a)th

bit of ~c, or 3) toggle one bit in ~c. By carefully choosing the order in which these three
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types of operations are repeated, we will reach ~a = ~b = ~c = ~0 in no more than 2r steps.

The general strategy is to take no more than r steps to reach ~a = 0, interspersed with no

more than r steps to reach ~b = 0. Since steps of the second type also affect ~c, we order the

steps so that we zero out bits of ~c for free. Only if we need fewer than r steps of the first

or second type will we ever take steps of the third type.

While dH(~0,~a) > 0, the algorithm repeats the following: if cdH(~0,~a) = 1 it toggles

cdH(~0,~a), using the operation of type 2 that moves ~b closer to ~0 in H if dH(~0,~b) > 0 and

using fG,2k+dH(~0,~a) (which is of type 3) otherwise. (Note that all type 2 operations on

~a : ~b : ~c toggle the same bit in ~c.) It then uses the operation of type 1 that moves ~a one

step closer to ~0 in H. If cdH(~0,~a) = 0 it does only the second of these operations.

This part of the algorithm repeats dH(~0, ~w1) times, using either one or two steps per

iteration. All together, it uses dH(~0, ~w1) +
∑dH(~0, ~w1)

i=1 steps. When it terminates, ~a = ~0.

Also dH(~0,~b) ≤ r − ∑dH(~0, ~w1)
i=1 , and no more than r − dH(~0, ~w1) bits of ~c are equal to 1

(since for each ci = 1 with i ≤ dH(~0, ~w1), ci has been toggled). Thus we need at most

r −∑dH(~0, ~w1)
i=1 operations of type 2 (treating ~b as a vertex of H) to bring ~b to ~0. We can

additionally use the operation fG,2k+i of type 3 to toggle each ci where ci = 1. As noted,

there are at most r − dH(~0, ~w1) such i.

The total number of steps used is thus at most 2r. ut

Example. A path of length 4 from 11111111 to 00000000 in T2, the twisted hypercube

obtained from T1 by the above construction. The three types of operations discussed above

do the following. Type 1 treats the first three bits as a vertex of T1, leaving the rest

unchanged. Type 2 treats the next three bits as a vertex of T1, while (possibly) toggling

one of the last two bits. The bit toggled depends on how far from ~0 the first three bits
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are, considered as a vertex of T1. Type 3 toggles either of the last two bits. Thus we can

proceed from 11111111 to 11110010 by an operation of the second type, moving the second

three bits from 111 to 100 in T1 while toggling the second bit (of the last two bits) because

the first three bits are 111, which has distance 2 from ~0. We then treat the first three bits

as a vertex of T1 and proceed from 11110010 to 10010010. Then a step similar to the first

gives us 10000000, and we finish by taking the last step to 00000000, again treating the

first three bits as a vertex of T1. ut

Now let H0 be a twisted hypercube of dimension a and radius b. For i ≥ 1, let Hi

be the twisted hypercube obtained by performing the construction on Hi−1. The radius

ri of Hi is 2ib. The dimension ki of Hi is 2ki−1 + ri−1. We must solve the recurrence

k0 = a, ki = 2ki−1 + ri−1 to find a general form for the dimension. A simple inductive

proof shows that the solution is ki = 2ia + i2i−1b = 2i(a + ib
2 ). Specifically, if we perform

this construction with T0 = K2 which has radius b = r0 = 1 and dimension a = 1, then we

have ki = 2i−1(i + 2) and ri = 2i.

Theorem 7.1.2. The minimum diameter among twisted hypercubes of dimension k is

in Θ(k/ lg k).

Proof: Let ki = 2i−1(i + 2) be the dimension of Ti. Given k, choose i so that

ki−1 ≤ k ≤ ki. Let H be the subgraph of Ti induced by the vertices whose leftmost ki − k

bits are 0. Observe that H has radius at most r(Ti) since the algorithm avobe does not

leave H when traveling from a given vertex of H to ~0. This means that, for k ≤ ki, the

minimum radius of a k-dimensional twisted hypercube is no more than r(Ti). Because the
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last factor has limit 1, we have

2i ≤ 2i(1 +
ε

4
)

i + 1
i− 1 + lg(i + 2)

for any ε and sufficiently large i. Rewriting, we have

r(H) ≤ r(Ti) = 2i ≤ (4 + ε)
2i−2(i + 1)

lg(2i−1(i + 2))
=

ki−1

lg ki
≤ k

lg k

where the last step uses the choice of i so that ki−1 ≤ k ≤ ki.

Since the diameter of a graph is no more than twice the radius, this proves, for sufficiently

large k, that the minimum diameter of a k-dimensional twisted hypercube is bounded above

by a constant times k
lg k . We may choose the constant to be any number larger than 8.

Since we have already shown that the diameter of a k-dimensional twisted hypercube is at

least k
lg k − 1, this completes the proof. ut

Another parameter of interest when considering twisted hypercubes and their diameter

is the routing runtime, loosely defined as the time it takes a vertex v to decide which

neighbor is the first step of the shortest path to another vertex w. Here we note only that,

for the problem of traveling from v to w, we have only shown how to travel from v to ~0

to w. The first part of this path, from v to ~0 can have constant routing runtime; we can

calculate in advance the first step from v to ~0 for each vertex v and store that at v. To

travel from 0 to w, however, each vertex along the path must run the above algorithm in

reverse, finding the path from w to ~0, so that it knows the next step. If each processor

can store the first step for every vertex (a possibly unreasonable requirement), then the

routing time would be linear in the distance from ~0 to the destination.
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8. Domination number of Kneser graphs

In this chapter we study dominating sets in a family of graphs of classical interest. A

dominating set S of a graph G is a a set S ⊆ V (G) such that every vertex of V (G) \ S is

adjacent to some vertex in S. A total dominating set S of a graph G is a set S ⊆ V (G)

such that every vertex of V (G) is adjacent to some vertex in S. The domination number

γ(G) of a graph G is the minimum size of a dominating set, and the total domination

number γt(G) is the minimum size of a total dominating set. Always γ(G) ≤ γt(G), since

a total dominating set is also a dominating set.

The Kneser graph K(n, k) has as vertices the k-sets of [n]. Two vertices of K(n, k) are

adjacent if the k-sets are disjoint. In this context, we often call the elements of [n] points.

When n < 2k the Kneser graph is an independent set; when n = 2k it is a matching. Thus,

we consider only n ≥ 2k + 1. Let γ(n, k) = γ(K(n, k)), and let γt(n, k) = γt(K(n, k)).

As mentioned in Chapter 1, the value of this parameters on the Kneser graph is of

interest to graph theorists and has applications to design theory.

The problems of determining the domination number and total domination number of

a Kneser graph can be restated in terms of blocking sets. A blocking set for a collection S

of subsets of [n] is a set B ⊆ [n] such that B intersects every set in S. A collection S of

k-sets of [n] is a total dominating set of K(n, k) if and only there is no k-element blocking

set for S. Such a collection S is a dominating set of K(n, k) if and only if every k-element

blocking set for S belongs to S.

It is easy to show that γt(n, k) ≤ k + 1 when n ≥ k2 + k. Every collection of k + 1

pairwise disjoint k-sets is a total dominating set, since no k-set can intersect all k + 1 of

these sets. Clark [6] showed that also γ(n, k) ≥ k + 1 when n ≥ k2 + k. He further showed
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that γt(n, k) = γ(n, k) = k + 2 when k2 + k − k
2 ≤ n < k2 + k. We extend these results

to show that γ(n, k) = γt(n, k) = k + t + 1 when k2 + k − tbk
2 c ≤ n < k2 + k − (t− 1)bk

2 e

and 0 ≤ t ≤ dk
2 e. We prove that γt(n, k) ≤ k + t + 1 (by construction), and we prove that

γ(n, k) ≥ k + t + 1 for. Since the bounds are equal and γ(G) ≤ γt(G), this implies that

γ(n, k) = γt(n, k) in the given range.

Clark also noted that γt(n, k) is nonincreasing in n, that is, that n′ ≥ n implies

γt(n′, k) ≤ γt(n, k), and he asked whether the corresponding statement holds for γ(k, n).

We prove that it does.

8.1. Monotonicity of γ(n, k)

We first prove that γt(n, k) is nonincreasing in n.

Theorem 8.1.1. If n′ ≥ n, then γt(n′, k) ≤ γt(n, k).

Proof: We show that every total dominating set S of K(n, k) is also a total dominating

set of K(n′, k). For every k-set A of [n′], A ∩ [n] has no more than k elements. Let C

be any k-set of [n] containing A ∩ [n]. Since S is a total dominating set in K(n, k), some

Si ∈ S is disjoint from C. Since Si ∩ A ⊆ Si ∩ C, also Si ∩ A = ∅. Thus, every k-set A is

disjoint from some set in S, and S is a total dominating set in K(n′, k). ut

We cannot use the same argument to prove the monotonicity of γ(n, k). It could happen

that every extension C of A∪[n] for a given set A ⊆ [n′] belongs to S. In this case, S would

be a dominating set in K(n, k) without being a dominating set in K(n′, k). We prove that

this cannot happen when S is a minimal dominating set in K(n, k) and n′ = n + 1.

Theorem 8.1.2. If n′ ≥ n ≥ 2k + 1 then γ(n′, k) ≤ γ(n, k).
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Proof: It suffices to prove only that γ(n + 1, k) ≤ γ(n, k). Let S be a minimal

dominating set in K(n, k). We show that S is a dominating set in K(n + 1, k). Let A

be an arbitrary k-set in K(n + 1, k). We must find a set Si ∈ S so that S ∩ A = ∅. If

A ⊆ [n], then such Si exists because S is a dominating set in K(n, k). If, on the other

hand, n + 1 ∈ A, let C = {Ci : Ci is a k-set of [n] and (A ∩ [n]) ⊆ Ci} be the set of k-sets

of [n] extending A−{n+1}. Note that |C| = n−k +1 since there are n− (k−1) elements

in [n] \ A. If some Ci ∈ C is not in S, then the argument of Theorem 8.1.1 applies. Thus

we may assume that C ⊆ S. For each Ci ∈ C, let ci denote the point in Ci but not in A.

We claim that each S−Ci is a dominating set in K(n, k). If not, then for some i there is a

k-set D such that D is disjoint from Ci but D intersects every Cj with j 6= i. Thus cj ∈ D

for all j 6= i. This implies that D must have n − k elements, since the cj ’s are distinct.

Since n− k ≥ k + 1, we have obtained a contradiction. ut

8.2. The upper bound

We prove the upper bound for γt(n, k) by construction, finding a total dominating set

of the required size.

Theorem 8.2.1. γt(n, k) ≤ k + t + 1 for n ≥ k2 + k − tbk
2 c, where t ≤ dk

2 e.

Proof: We prove the claim only for n = k2 + k − tbk
2 c. Theorem 8.1.1 then implies

that it holds for all larger n. We use the observation that a collection S of k-sets is a

total dominating set in K(n, k) if every set intersecting all its members has more than k

elements. We construct such a collection S of size k + t + 1.

When k is even, we write n as k2 − (t − 2)k
2 . We use two configurations, A and T , as

depicted in Figure 8.1; A is simply a k-set. The configuration T consists of three k-sets,
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Figure 8.1.

corresponding to three groups of k
2 points taken two groups at a time. Note that it takes

at least two points to intersect all three k-sets of T . Let S, a collection of k-sets, consist

of k − 2t + 1 copies of A and t copies of T , all pairwise disjoint. Then S is a collection of

(k − 2t + 1) + 3t k-sets whose union has k(k − 2t + 1) + t(3k
2 ) = k2 − (t− 2)k

2 = n points.

Suppose that some set B intersects every member of S. Then B must have at least one

element from each copy of A, and at least two elements from each copy of T . Since the

copies are pairwise disjoint, B must have (k−2t+1)+2t = k +1 elements. Thus, no k-set

intersects all members of S, and S is a total dominating set in K(n, k).

When k is odd, we write n as k2 − (t − 2)k
2 + t

2 . The construction is similar to the

even case, but we must use a different configuration T ′ instead of T since k
2 is no longer

an integer (see Figure 8.1). Like T , the configuration T ′ consists of three k-sets, but here

we begin with one group of k+1
2 points, two groups of k−1

2 points, and one extra point.

The three k-sets are formed by taking the groups two at a time, the extra point is used

to make the set formed by the two groups of k−1
2 points have k points in it. Note that T ′

uses a total of 3k+1
2 points. As with T , it takes at least two points to interesect the three
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k-sets of T ′. Let S consist of k− 2t + 1 copies of A and t copies of T ′, all disjoint. Then S

is a set of (k− 2t+1)+3t k-sets on k(k− 2t+1)+ t(3k+1
2 ) = k2− (t− 2)k

2 + t
2 = n points.

Again, a set B intersecting every member of S must have at least (k− 2t + 1) + 2t = k + 1

elements, and thus S is a dominating set. ut

8.3. The lower bound

We begin with some necessary lemmas.

Lemma 8.3.1. Every multigraph with maximum degree k and e edges contains a match-

ing of size d e
b3k/2ce.

Proof: Shannon’s Theorem [27] states that a multigraph with maximum degree k is

b 3k
2 c-edge-colorable. In such a coloring, each color is used on an average of e

b3k/2c edges.

Some color must therefore be used on at least d e
b3k/2ce edges. These edges are pairwise

disjoint, and thus they form the required matching. ut

Lemma 8.3.2. Let S be a set of k + t k-sets from a set [n] such that n ≥ 2k + t. If S

has a blocking set of size k − 1, then S is not a dominating set of K(n, k).

Proof: A blocking set of size k − 1 is extendable to a blocking set of size k in

n − (k − 1) ≥ k + t + 1 ways. Only k + t of these can be in S. Therefore, there is a

blocking set of size k that is not in S. This set is a vertex of K(n, k) that is not in S and

is not adjacent to any vertex in S. ut

We now prove a technical lemma of independent interest.
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Lemma 8.3.3. If n < k2 + k − (t− 1)bk
2 c and S is a collection of k + t sets of size k in

[n], then [n] contains a set J that intersects |J |+ t members of S.

Proof: Let G be the incidence graph between points in [n] and members of S. That

is, G is the bipartite graph with partite sets X = [n] and Y = S that has an edge from

x ∈ X to Sy ∈ Y if and only if x ∈ Sy. We claim that X contains a set J such that

|N(J)| = |J | + t; in other words, J intersects at least |J | + t sets in S. We begin by

iteratively selecting a set M ⊆ X. As long as such a vertex is available, we select a vertex

for M that has at least three neighbors not yet adjacent to any vertex of M . We stop

when no such vertex remains. If m is the number of points selected for M , then we have

|N(M)| = m + l with l ≥ 2m. Furthermore, with X ′ = X \M and Y ′ = Y \N(M), each

element of X ′ has at most two neighbors in Y ′ (see Figure 8.2).

Now let G′ be the subgraph of G induced by X ′ and Y ′. Each vertex in Y ′ corresponds

to a k-set, and none of these k-sets contain points in M since Y ′ = Y \ N(M). Thus,

each of the (k + t−m− l) vertices in Y ′ is adjacent to k points in X ′, so G′ has exactly

k(k + t−m− l) edges. Since there are k(k + t−m− l) edges to the n−m points in X ′,
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there must be at least k(k + t−m− l)− (n−m) points in X ′ that have degree 2 in G′.

Now form a multigraph H on the k + t −m − l sets of S that remain in Y ′. Place an

edge between two sets for each point in X ′ that is in both of them. That is, H has an

edge for each vertex in X ′ with degree 2 in G′. This yields a multigraph H with at least

k(k + t − m − l) − (n − m) edges. We claim that H has a matching with at least t − l

edges. By Lemma 8.3.1, it suffices to show that H has more than (t − l − 1)b 3k
2 c edges.

Since n ≤ k2 + k − (t− 1)bk
2 c − 1, we have

e(H) ≥ k(k + t−m− l)− (k2 + k − (t− 1)bk
2
c − 1−m)

= (t− 1)bk
2
c+ k(t−m− l − 1) + m + 1

= (t− l − 1)b3k

2
c+ lbk

2
c − (k − 1)m + 1

Since l ≥ 2m, we have lbk
2 c ≥ 2m(k − 1)/2 = (k − 1)m, and the desired bound holds.

Now, since each edge in H corresponds to a point in X ′ that is in two sets in Y ′, a

matching of size t− l in H corresponds to a set of t− l points that intersects 2t− 2l sets

in Y ′. Together with M , this forms our set J of j = m + t − l points with |N(J)| =

(m + l) + (2t− 2l) = m + 2t− l = j + t. ut

We now prove the lower bound.

Theorem 8.3.4. γ(n, k) ≥ k + t + 1 if n < k2 + k − (t− 1)bk
2 c, where 0 ≤ t ≤ dk

2 e.

Proof: Let S be a collection of k+t k-sets for some n, k, and t fulfilling the hypotheses.

We prove that S is not dominating by finding a blocking k-set B for S such that B is not

in S. By Lemma 8.3.3, we have a set J ⊆ [n] that intersects |J |+ t members of S.

Since each member of S has size k, we can now choose k−|J | additional distinct points,

one from each of the remaining k + t− (|J |+ t) sets in S, to form a k-set B that intersects
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every set in S.

We claim there must be some point u of B such that B−u intersects all sets in S except

for at most one. If not, then for each b ∈ B there would be at least two sets in S whose

only intersection with B would be b. These must be distinct, but S has only k + t < 2k

sets.

If B − u intersects all sets of S, then Lemma 8.3.2 completes the proof. Otherwise, let

U be the only set of S not intersected by B − u. Thus U ∩ B = {u}. There are k ways

to augment B − u using an element of U . If any of these k-sets is not in S we have found

a blocking k-set for S that is not in S, which corresponds to a vertex of K(n, k) that is

not dominated. If each of these k-sets is in S, then B − u is a common (k − 1)-set for k

elements of S (see Figure 8.3). In this case, S has a blocking set of size no greater than

t+1, consisting of one point from B−u and at most one point from each of the remaining

t other sets in S. Since t + 1 < k− 1, Lemma 8.3.2 implies that S is not a dominating set.

ut

8.4. Constructions for smaller n.

In this section we describe the best construction we have found for the full spectrum of
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n. It generalizes the construction of Section 8.2 and may be optimal, at least near the top

of the range.

We can form a configuration of k-sets generalizing A and T from Section 8.2 by starting

with a groups of k
b points and taking all sets of b groups as k-sets. With a = b = 1 we get

configuration A, and with a = 3 and b = 2 we get configuration T . This a, b-configuration

consists of
(
a
b

)
k-sets and uses a total of ak

b points. It takes a set of size at least a− b + 1

to intersect all
(
a
b

)
k-sets, because a − b points intersect at most a − b groups, leaving b

groups which form a k-set that has not been intersected.

Form a collection S of k-sets by taking d k+1
a−b+1e pairwise disjoint copies of the a, b-

configuration. This collection S uses d k+1
a−b+1eak

b points and forms d k+1
a−b+1e

(
a
b

)
k-sets. It

requires at least (a− b+1)d k+1
a−b+1e ≥ k +1 points to intersect each k-set of S. This means

S is a total dominating set in K(n, k) for n = d k+1
a−b+1eak

b . This proves γt(d k+1
a−b+1eak

b , k) ≤

d k+1
a−b+1e

(
a
b

)
.

As in Section 8.2, we can form a collection S of k-sets using two types of configurations,

say a, b and a′, b′. If we take α copies of the a, b-configuration, and α′ copies of the a′, b′-

configuration where α(a− b+1)+α′(a′− b′+1) ≥ k +1 then we have a dominating set of

size α
(
a
b

)
+ α′

(
a′

b′
)

on n = αak
b + α′ a

′k
b′ points. This gives us a way to interpolate between

two configurations.

Consider the bound γt(d k+1
a−b+1eak

b , k) ≤ d k+1
a−b+1e

(
a
b

)
that we get from the a, b-config-

uration. We can represent this bound as a point pa,b = (d k+1
a−b+1eak

b , d k+1
a−b+1e

(
a
b

)
) on a

graph with axes n and γ. Since a dominating collection of sets is still dominating if we add

more sets to it, we can prove the bound represented by any point to the right of pa,b. By

the monotonicity of γt(n, k) we can thus prove the bound represented by any point above
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and to the right of pa,b.

By using collections formed from two types of configurations, we can (roughly) inter-

polate between the points representing the bounds those configurations give us. This

interpolation will not be exact, as there are divisibility conditions on k, but it still enables

us to prove something close to the bound represented by any point in the convex hull of

the points pa,b as we vary a and b. Examination of the points pa,b for small a and b leads

us to believe that the one parameter family represented by the a, da
2 e-configurations are

the best. Perhaps the interpolations between them give the actual value of γt(n, k), not

just an upper bound. Note that Theorems 1.2.1 and 1.3.4 prove this for the interpolation

between the 1, 1-configuration and the 3, 2-configuration. So far, we have not been able

to prove this for any additional configurations. It is probable that a hypergraph matching

result extending Shannon’s theorem will be needed, and such a result appears not to be

known.
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EXTREMAL PROBLEMS IN GRAPH THEORY
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We consider generalized graph coloring and several other extremal problems in graph

theory. In classical coloring theory, we color the vertices (resp. edges) of a graph requiring

only that no two adjacent vertices (resp. incident edges) receive the same color. Here we

consider both weakenings and strengthenings of those requirements. We also construct

twisted hypercubes of small radius and find the domination number of the Kneser graph

K(n, k) when n ≥ 3
4k2 + k if k is even, and when n ≥ 3

4k2 − k − 1
4 when k is odd.

The path chromatic number χP (G) of a graph G is the least number of colors with which

the vertices of G can be colored so that each color class induces a disjoint union of paths.

We answer some questions of Weaver and West [31] by characterizing cartesian products

of cycles with path chromatic number 2.

We show that if G is a toroidal graph, then for any non-contractible chordless cycle C

of G, there is a 3-coloring of the vertices of G so that each color class except one induces

a disjoint union of paths, while the third color class induces a disjoint union of paths and

the cycle C.

The path list chromatic number of a graph, χ̂P (G), is the minimum k for which, given

any assignment of lists of size k to each vertex, G can be colored by assigning each vertex a

color from its list so that each color class induces a disjoint union of paths. We strengthen



the theorem of Poh [24] and Goddard [11] that χP (G) ≤ 3 for each planar graph G by

proving also that χ̂P (G) ≤ 3.

The observability of a graph G is least number of colors in a proper edge-coloring of G

such that the color sets at vertices of G (sets of colors of their incident edges) are pairwise

distinct. We introduce a generalization of observability. A graph G has a set-balanced

k-edge-coloring if the edges of G can be properly colored with k colors so that, for each

degree, the color sets at vertices of that degree occur with multiplicities differing by at

most one. We determine the values of k such that G has a set-balanced k-edge-coloring

whenever G is a wheel, clique, path, cycle, or complete equipartite multipartite graph. We

prove that certain 2-regular graphs with n vertices have observability achieving the trivial

lower bound min{j :
(

j
2

) ≥ n}. Horňák conjectured that this is always so.

The spot-chromatic number of a graph, χS(G), is the least number of colors with which

the vertices of G can be colored so that each color class induces a disjoint union of cliques.

We generalize a construction of Jacobson to show that χS(Kmt Knt) ≤ mnt
m+n +2min(m,n)

whenever m + n divides t. The construction is nearly optimal.

Twisted hypercubes, generalizing the usual notion of hypercube, are defined recursively.

Let G0 = {K1}. For k ≥ 1, the family Gk of twisted hypercubes of dimension k is the set

of graphs constructible by adding a matching joining two graphs in Gk−1. We construct a

family of twisted hypercubes of small diameter. In particular, we prove that the order of

growth of the minimum diameter among twisted hypercubes of dimension k is Θ(k/ lg k).

The domination number γ(G) of a graph G is the minimum size of a set S such that

every vertex of G is in S or is adjacent to some vertex in S. The Kneser graph K(n, k)

has as vertices the k-subsets of [n]. Two vertices of K(n, k) are adjacent if the k-subsets



are disjoint. We determine γ(K(n, k)) when n ≥ 3
4k2 ± k depending on the parity of k.


