
Sperner’s Lemma

Def: A proper labeling of the vertices of a simplicial subdi-
vision of a d-dimensional simplex assigns the labels {0, 1, . . . , d}
to the vertices so that each label is absent from one (d-dimen-
sional) face of the simplex.

Sperner’s Lemma: Any properly labeled simplicial sub-
division of a d-dimensional simplex contains a completely la-
beled cell. (That is, a cell whose vertices use every label.)



The Connector Theorem

Def: In a coloring of the vertices of a simplicial complex,
a connector is a connected, monochromatic subgraph that con-
tains a vertex on each face.

The Connector Theorem:(Hochberg-McDiarmid-Saks)
Any d coloring of the vertices of a simplicial subdivision of a
d-dimensional simplex contains a connector.



Pouzet’s Lemma

Def: In d-space, call the unit vectors along the axes
{u1, u2, . . . , ud}. A box of the integer lattice points is the set
of points ~x = (x1, x2, . . . , xd) satisfying ai ≤ xi ≤ bi, 1 ≤ i ≤ d.
We call two points neighbors if their coordinates differ by no
more than one in any position.

Pouzet’s Lemma: For any mapping f from the lattice
points of a d-dimensional box A to the set of unit vectors
{±u1,±u2, . . . ,±ud} such that ~x + f(~x) is in A for all ~x in
A, there exist two neighbors ~x and ~y such that f(~x) = −f(~y).



The Brouwer Fixed Point Theorem

The Brouwer Fixed Point theorem states that every con-
tinuous mapping f from the closed unit box A in d-dimensional
space into itself has a point x for which f(x) = x.



The Game of Hex

The d-dimensional Game of Hex is played on the lattice
points in a d-dimensional box, where two points ~x and ~y are
connected if (~x − ~y) or (~y − ~x) is in {0, 1}d. (In other words,
if they differ by at most one in each coordinate, and every
coordinate of ~x is at least as big as the corresponding coordinate
of ~y or vice versa.) Each of d players is assigned a distinct color
and two opposite faces of the box. Players take turns coloring
one point with their own color, the first to create a path of her
own color between her faces is the winner. The Theorem of
Hex states that there will always be a winner in the Game of
Hex.



Proof of Sperner’s Lemma

We prove the stronger result that there are an odd number
of completely labeled cells. Create a graph G in the dual of the
simplicial complex. (That is, this graph has a vertex for each
cell of the simplicial complex, and one vertex for the outer
region) Connect two vertices in G if the ((d− 1)-dimensional)
face between the cells has precisely the labels {0, 1, . . . , d− 1}.
The vertex corresponding to the outer region of the simplicial
complex has odd degree (by induction!). Since each edge in a
graph contributes 2 to the total degree, the number of vertices
of odd degree in a graph must be even. Thus, there are an odd
number of cells whose vertices have odd degree. These cells are
completely labeled.



Sperner implies Connector

Assume (for an eventual contradiction) that there is a
d coloring of the vertices of a simplicial subdivision of a d-
dimensional simplex without a connector. Generate a new col-
oring in the following manner: Assign the labels {0, 1, . . . , d} to
the (d− 1 dimensional) faces of the simplex. Label each vertex
with the smallest number of an edge it cannot reach on a path
of it’s own color. This is a proper labeling, so by Sperner’s
Lemma, there is a completely labeled cell. However, at least
two of the vertices of any cell are the same color. All vertices
of a cell are adjacent, so we have found two adjacent vertices
of the same color that have different smallest edges they can
reach, a contradiction.



Connector implies Hex

Given a coloring of a d dimensional box, and the faces each
player is trying to connect, add some new vertices. For each
player, add one vertex of that players color, and connect it to
all vertices on one of that player’s faces and to all other new
vertices. The result is a d dimensional simplex that has been
d colored, so it has a connector. The connector must include
vertices from both of the players faces, so that player has won
the game of Hex.



Hex implies Pouzet

Given a d-dimensional box A and a function f as in the
statement of Pouzet’s Lemma, connect the vertices as in the
Theorem of Hex. Note that each vertex is connected only to
“neighbors” as defined in the statement of Pouzet’s Lemma.
Assign each dimension a color. Color a vertex ~x of A with the
color of the dimension that f(~x) extends in. Assign color i the
faces perpendicular to dimension i, and invoke the Theorem of
Hex. Since some color “wins” there is a monochromatic path
connecting faces perpendicular to some dimension where every
vertex ~x on the path has f(~x) in that dimension. Since f(~x)
never points outside of A, the first and last vertices on this
path have f(~x) pointing in opposite directions. Clearly, there
must be two adjacent vertices ~x and ~y on this path where the
direction changes. ~x is a neighbor of ~y, and f(~x) = −f(~y).



Pouzet implies Brouwer

Assume (for an eventual contradiction) that there is a con-
tinuous function f from the unit box into itself that has no
fixed point. Then the function g, equal to the angle of the
vector f(x) − x, is well defined and continuous. We can thus
draw a rectangular grid so that on neighboring (as in Pouzet’s
Lemma) points of the grid g changes by less that ninety de-
grees. On such a grid, define a function h that assigns each
point the unit vector along the axis closest to f(x)− x. Invok-
ing Pouzet’s Lemma with h(x), we find two neighboring points
x and y where h(x) = −h(y). This is a contradiction, since the
definition of g assures us that f(x) − x and f(y) − y differ by
less than ninety degrees. Two such vectors cannot be “nearest”
to two opposite unit vectors.



Brouwer implies Sperner

Assume (for an eventual contradiction) that there is a
proper labeling f of a simplicial subdivision of a simplex that
does not have a completely labeled cell. Express every point
x in a cell by a convex combination α0v0 + α1v1 + · · · + αdvd

of the vertices {v0, v1, . . . , vd} of that cell. Create a function g
which maps α0v0 + α1v1 + · · · + αdvd to α0V1 + α1V2 + · · · +
αd−1Vd + αdV0 where {V0, V1, . . . , Vd} are the (outer) vertices
of the simplex. Since there are no completely labeled cells, g
is a continuous function that maps every point in the simplex
to a point on the faces of the simplex. It is easy to verify that
g has no fixed point, which is a contradiction of the Brouwer
Fixed Point Theorem.


