
homework #7 solutions

section 4.1

#7. Show that limx→c x3 = c3 for all c ∈ R.

Proof: Let ε > 0. Pick δ = min{1, ε
3c2+3c+1}. Then, for 0 < |x− c| < δ, we know

|x3 − c3| = |x− c||x2 + xc + c2| < δ(3c2 + 3c + 1) ≤ ε

3c2 + 3c + 1
(3c2 + 3c + 1) = ε.

#12. Suppose the function f : R → R has limit L at 0, and let a > 0. If
g : R→ R is defined by g(x) = f(ax) for all x ∈ R show that limx→0 g(x) = L.

proof: Since limx→0 f(x) = L, we know that for an arbitrary ε > 0 there exists
a δ > 0 such that if 0 < |x| < δ then |f(x) − L| < ε. If 0 < |x| < δ/a, then
0 < |ax| < δ. But, this means |g(x)− L| = |f(ax)− L| < ε. Since ε is arbitrary, we
have shown limx→0 g(x) = L.

section 4.2

#9. Let f, g be defined on A to R. Let c be a cluster point of A.
(a) Show that if both limx→c f and limx→c(f + g) exist, then limx→c g exists.

Proof: Assume limx→c f = N and limx→c(f +g) = M. We apply Theorem 4.2.4:

lim
x→c

g = lim
x→c

(g + f − f) = lim
x→c

(g + f)− lim
x→c

f = M −N.

(b) If lim f and lim(fg) exists, does it follow that lim g exists?

Answer: No. Pick f(x) = x and g(x) = 1/x and consider the limits as x ap-
proaches 0.

#12. Let f : R→ R such that f(x + y) = f(x) + f(y) and limx→0 f = L. Prove
L = 0. Prove that f has a limit at every point.

Proof: First we show that L = 0. Our strategy will be to show that limx→0 f = L
implies limx→0 f = L/2. Since limits are unique, the only conclusion is L = 0.
By assumption, we know that given ε > 0 there exists δ > 0 such that if 0 < |y| < δ,
then |f(y)−L| < ε. Thus, if 0 < |x| < δ/2, then 0 < |2x| < δ and |f(2x)−L| < ε. But
|f(2x)−L| = |2f(x)−L| = 2|f(x)−L/2|. Thus, we now know that if 0 < |x| < δ/2,
|f(x)− L/2| < ε/2 < ε. Since ε was arbitrary, this shows that limx→0 f = L/2.

Second, we show that f has a limit at every point. From the first part, we know
limx→0 f = 0. Thus, for every ε > 0 there exists δ > 0 such that if 0 < |y| < δ then
|f(y)| < ε. Thus, if 0 < |x−c| < δ, then |f(x−c)| < ε. But, |f(x−c)| = |f(x)−f(c)|.
Thus, we know that if 0 < |x − c| < δ, |f(x) − f(c)| < ε. Since ε is arbitrary, we
have shown not only that the limit of f at c exists, but we have shown it is equal
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to f(c).

section 5.1

#3. Assume f is continuous on [a, b] and g is continuous on [b, c] and f(b) = g(b).
Define h(x) = f(x) on [a, b] and h(x) = g(x) on (b, c]. Show that h is continuous on
[a, c].

proof: Given ε > 0, we need to show that for every w ∈ [a, c] there is a γw such
that if x ∈ [a, c] and |x− w| < γw, then |h(x)− h(w)| < ε.
If w ∈ [a, b], we know there is δw,f such that if x ∈ [a, b] and |x − w| < δw,f , then
|f(x)−f(w)| < ε. Similarly, if w ∈ [b, c], we know there is δw,g such that if x ∈ [b, c]
and |x− w| < δw,g, then |g(x)− g(w)| < ε.
Thus, if w ∈ [a, b), we pick γw = min{b − w, δw,f} which implies that if x ∈ [a, c]
and |x− w| < γw, then |h(x)− h(w)| = |f(x)− f(w)| < ε.
If w ∈ (b, c], we pick γw = min{c − w, δw,g} which implies that if x ∈ [a, c] and
|x− w| < γw, then |h(x)− h(w)| = |g(x)− g(w)| < ε.
If w = b then we pick γb = min{δb,f , δb,g} which implies that
(1) if x ∈ [a, b] and |x− b| < γb ≤ δb,f , then |h(x)− h(b)| = |f(x)− f(b)| < ε.
or
(2) if x ∈ [b, c] |x− b| < γb ≤ δb,g, then |h(x)− h(b)| = |g(x)− g(b)| < ε.

#6. Let A ⊆ R and assume f : A → R is continuous at c ∈ A. Show that for
any ε > 0 there exists a neighborhood Vδ(c) such that |f(x) − f(y)| < ε for all
x, y ∈ (A ∩ Vδ(c).

proof: Given ε > 0. Since f is continuous at c, we know there exists δ > 0 such
that if xinA and |x− c| < δ, then |f(x)−f(c)| < ε/2. Thus, for all x, y ∈ A∩Vδ(c),

|f(x)−f(y)| = |f(x)−f(c)+f(c)−f(y)| ≤ |f(x)−f(c)|+|f(c)−f(y)| < ε/2+ε/2 = ε

which is what we wanted to show.

section 5.2

#10. Let f : R → R be continuous and let P = {x ∈ R|f(x) > 0}. If c ∈ P
show that there exists a neighborhood Vδ(c) ⊆ P.

proof: By assumption, we know f(c) > 0. Thus, pick ε = f(c)/2. Since f is
continuous at c, we know there exists δ > 0 such that if x ∈ Vδ(c), then f(x) ∈
Vε(f(c)). Thus, for all x ∈ Vdelta(c), 0 < f(c)/2 < f(x) < 3f(c)/2. Thus, Vdelta(c) ⊆
P.


