homework #7 solutions
section 4.1
#7. Show that lim,_,. 23 = ¢3 for all ¢ € R.

Proof: Let € > 0. Pick § = min{1, 557577} Then, for 0 <[z —¢| <4, we know

|2° — | = |z —¢||z? + zc+ | < 53 +3c+1) < (3c* +3c+1) =

€
~ 32 +3c+1

#12. Suppose the function f : R — R has limit L at 0, and let a > 0. If
g : R — R is defined by g(x) = f(ax) for all 2 € R show that lim,_,o g(z) = L.

proof: Since lim,_.¢ f(z) = L, we know that for an arbitrary e > 0 there exists
a ¢ > 0 such that if 0 < |z| < § then |f(z) — L] < e. If 0 < |z] < §/a, then
0 < |az| < 6. But, this means |g(z) — L| = |f(ax) — L| < e. Since € is arbitrary, we
have shown lim, ¢ g(z) = L.

section 4.2

#9. Let f, g be defined on A to R. Let ¢ be a cluster point of A.
(a) Show that if both lim,_.. f and lim,_..(f + ¢) exist, then lim,_.. g exists.

Proof: Assume lim,_.. f = N and lim,_,.(f +¢) = M. We apply Theorem 4.2.4:

lim g = lim(g + f — f) = lim (g + f) — lim f = M — N.

xr—c

(b) If lim f and lim(fg) exists, does it follow that lim g exists?

Answer: No. Pick f(z) = z and g(z) = 1/x and consider the limits as x ap-
proaches 0.

#12. Let f : R — R such that f(z +vy) = f(x) + f(y) and lim,_,¢ f = L. Prove
L = 0. Prove that f has a limit at every point.

Proof: First we show that L = 0. Our strategy will be to show that lim, .o f = L
implies lim,_,o f = L/2. Since limits are unique, the only conclusion is L = 0.
By assumption, we know that given € > 0 there exists 6 > 0 such that if 0 < |y| < 4,
then |f(y)—L| < e. Thus, if 0 < |z| < §/2, then 0 < |2z| < § and |f(2z)—L| < €. But
|f(2z)—L| = |2f(z) — L| = 2| f(x) — L/2|. Thus, we now know that if 0 < |z| < §/2,
|f(z) — L/2| < €/2 < €. Since € was arbitrary, this shows that lim, .o f = L/2.

Second, we show that f has a limit at every point. From the first part, we know
lim,_,o f = 0. Thus, for every € > 0 there exists 6 > 0 such that if 0 < |y| < ¢ then
|f(y)] < e Thus,if 0 < |[z—c| < §, then |f(z—c)| < e. But, |f(z—c)| = | f(z)—f(c)].
Thus, we know that if 0 < |z —¢| < d, |f(x) — f(c)] < e. Since € is arbitrary, we
have shown not only that the limit of f at ¢ exists, but we have shown it is equal
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to f(c).
section 5.1

#3. Assume f is continuous on [a, b] and g is continuous on [b, ¢] and f(b) = g(b).
Define h(xz) = f(z) on [a,b] and h(x) = g(z) on (b, ¢]. Show that h is continuous on
[a, c].

proof: Given e > 0, we need to show that for every w € [a, c] there is a 7, such
that if x € [a,¢] and |z — w| < 4, then |h(x) — h(w)| < €.
If w € [a,b], we know there is d,, y such that if z € [a,b] and |z — w| < Jy, 5, then
|f(xz) = f(w)| < e. Similarly, if w € [b, ¢], we know there is d,, 4 such that if z € [b, (]
and |z — w| < dy,g, then [g(z) — g(w)| <e.
Thus, if w € [a,b), we pick 7, = min{b — w, d,, s} which implies that if z € [a, (]
and |z — w| < Yy, then |h(z) — h(w)| = |f(z) — f(w)| < e
If w e (b, ], we pick 7y, = min{c — w, d, 4} which implies that if = € [a,c] and
|z — w| < Y, then [A(z) — h(w)| = |g(x) — g(w)| <.
If w = b then we pick v, = min{dy f, 6 4} which implies that
(1) if z € [a,b] and |z — b|] < v, < 0, then |h(z) — h(b)| = |f(z) — f(b)| <e.
or
(2) if x € [b,c] |[x—b] < < 0pg, then |h(x) — h(b)| = |g(z) — g(b)] < e.

#6. Let A C R and assume f : A — R is continuous at ¢ € A. Show that for
any € > 0 there exists a neighborhood Vj(c) such that |f(x) — f(y)| < € for all
z,y € (AN Vs(c).

proof: Given € > 0. Since f is continuous at ¢, we know there exists 6 > 0 such
that if xinA and |z —¢| < §, then | f(z) — f(c)| < €/2. Thus, for all ,y € ANV;(c),
[f@)=fW) = f@)=fle)+fe)=fW)| < |f@)—flO)+|fle)—fy)| <e/2+e/2=¢
which is what we wanted to show.

section 5.2

#10. Let f : R — R be continuous and let P = {z € R|f(z) > 0}. Ifc€ P
show that there exists a neighborhood Vis(c) C P.

proof: By assumption, we know f(c) > 0. Thus, pick ¢ = f(c)/2. Since f is
continuous at ¢, we know there exists § > 0 such that if © € Vs(c¢), then f(z) €
Ve(f(c)). Thus, for all x € Vgepra(c), 0 < f(c)/2 < f(z) < 3f(c)/2. Thus, Vgeira(c) C
P.



