homework #3 solutions
Section 2.4
#2. If S={1/n—1/m:n,m € N}, find inf S and sup S.

Answer. We claim inf S = —1. Let 1/n — 1/m be an arbitrary element in S. Then,
I/n—1/m>1/n—1> —1. So —1 is a lower bound for S.

Let € > 0. By Corollary 2.4.5, there exists nyg € N such that 1/ng < e. Now,
I/np—1l<e—1=—-1+eand 1/ny—1¢€S. Thus, —1 =inf S.

We claim sup S = 1. Note that S = —S and apply homework problem #5 from
section 2.3 in which you proved inf S = —sup{—s:s € S}. We get —1 =inf § =
—sup{—s:s € S} = —supS which implies sup S = 1.

#4.b. Let S be a nonempty bounded set in R. Let b < 0 and let bS = {bs : s € S}.
Prove that inf bS = bsup S and sup bS = binf S.

Proof: Let S be a nonempty bounded set in R. Thus S has an infimum and a
supremum. Let v = sup S. We need to show that bv = inf S. Let bs be an arbitrary
element of 6S. Then, s € S and so s < v. But this implies that bs > bv. Thus,
bv is a lower bound for bS. Let r be an arbitrary element of R such that bv < r.
Then v > r/b. Since v = sup S, there exists an element sy € S such that sy > r/b.
But this implies that for the element bsy € bS, bsy < r. Thus, we have shown that
bv = inf bS = bsup S.

Let w = inf S. We need to show that bw = sup S. Let bs be an arbitrary element
of bS. Then, s € S and so s > v. But this implies that bs < bw. Thus, bw is a
lower bound for bS. Let r be an arbitrary element of R such that bw > r. Then
w < r/b. Since w = inf 5, there exists an element sy € S such that sy < r/b. But
this implies that, for the element bsy € bS, bsy > r. Thus, we have shown that
bw = sup bS = binf S.

# 6. Let A and B be bounded nonempty subsets of R, and let A+ B = {a+b:a €
Aandb € B}. Prove that sup(A+B) = sup A+sup B and inf(A+B) = inf A+inf B.

Proof: Let A and B be bounded nonempty subsets of R. Then we know they both



have an infimum and a supremum. Let uy and ug be the supremum of A and B
respectively. We want to show that w4 + up = sup(A + B). Let ¢ be an arbitrary
element of A 4+ B. Then there exist a € A and b € B such that ¢ = a + 0. Now,
c=a+b < us+b < uyg+up where the first inequality follows from u4 = sup A and
the second follows from up = sup B. This shows that u4+up is an upper bound for
A+ B. Let € > 0. We need to find an element ¢y € A+ B so that ¢y > ug +up — €.
We know there exist elements ag € A and by € B such that ag > us — €/2 and
bo > up — €/2. Thus we pick ¢ = ag+ by > us — €/2 + up — €/2 = ug + up — €.
Thus, we have shown sup(A + B) = sup A + sup B.

Let uy and up be the infimum of A and B respectively. We want to show that
wy + wp = inf(A + B). Let ¢ be an arbitrary element of A + B. Then there exist
a € Aand b € B such that c = a+b. Now, c = a+b > wqg+b > wy + wp
where the first inequality follows from w4 = inf A and the second follows from
up = Inf B. This shows that u4 + ug is a lower bound for A + B. Let ¢ > 0. We
need to find an element ¢y € A+ B so that ¢y < wa + wp, + €. We know there exist
elements ag € A and by € B such that ay < wy + €/2 and by < wp + €/2. Thus
we pick ¢g = ag+ by < wa+€/2+ wp +€/2 =us+ up + €. Thus, we have shown
inf(A + B) = inf A + inf B.

# 10. Let X and Y be nonempty sets and let h : X XY — R have bounded range
in R. Let f: X - Rand g:Y — R be defined by

f(z) =sup{h(z,y) :y € Y}, g(y) = inf{h(z,y) : x € X}.
Prove sup{g(y) : y € Y} < inf{f(x) : z € X}.

Proof. Since h is bounded, we know f and g are well-defined and are themselves
bounded. Let u = supg. In order to show that v < inf f it is enough to show
that u < f(x) for all z € X. Let € > 0. We know there exists a yy € Y such that
u— € < g(yp). But, by the definition of g, g(yy) < h(z,yo) for all z € X. But, by
the definition of f, f(z) > h(z,yg) for all x € X. Thus, for every e > 0 and every
r € X, u—e<g(y) <h(r,yo) < f(x). Thus, u < f(x) for every x € X which is
what we needed to show.

Section 2.5
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Proof. We will show that a; < ap,q for all £ € N. We know ag,1 € I..1 C I by
assumption. So, apyq1 € I. But, by definition of I, ar < ar1 < bg. So, ar < apiq.
Next we will show that b, > by, for all kK € N. We know br1 € [.1 C I by
assumption. So, bx1 € I. But, by definition of Iy, ar < br1 < by. So, by > bpiq.

# 7. Let I, = [0,1/n] for n € N. Show N>*,I,, = {0}.

Proof. By definition, 0 € [0,1/n] = I, for all n € N. So {0} C N>°,1,. Let
r € N 1, = {0}. We need to show that x = 0. By our choice of x, we know
0 < x < 1/n for all n € N. But we know that for every ¢ > 0, there exists
n. € N such that 1/n. < e. Thus, for every € > 0 there exists n. € N such that
0 <z < 1/n < € which implies = = 0.

# 9. Let K,, = (n,00) for n € N. Show N2, K,, = 0.

Proof. We will proceed by contradiction. Assume there exists a real number
x € N2, K. By the Archimedean Property, we know there exists a natural number

ng such that x < ng. But this implies that ¢ K, . This contradicts our choice of
x. Thus, there is no real number z € N, K, and so N2, K,, = ().



