homework \#3 solutions
Section 2.4
\#2. If $S=\{1 / n-1 / m: n, m \in N\}$, find $\inf S$ and $\sup S$.
Answer. We claim $\inf S=-1$. Let $1 / n-1 / m$ be an arbitrary element in S. Then, $1 / n-1 / m \geq 1 / n-1>-1$. So -1 is a lower bound for S.
Let $\epsilon>0$. By Corollary 2.4.5, there exists $n_{0} \in N$ such that $1 / n_{0}<\epsilon$. Now, $1 / n_{0}-1<\epsilon-1=-1+\epsilon$ and $1 / n_{0}-1 \in S$. Thus, $-1=\inf S$.

We claim $\sup S=1$. Note that $S=-S$ and apply homework problem $\# 5$ from section 2.3 in which you proved $\inf S=-\sup \{-s: s \in S\}$. We get $-1=\inf S=$ $-\sup \{-s: s \in S\}=-\sup S$ which implies $\sup S=1$.
\#4.b. Let S be a nonempty bounded set in R. Let $b<0$ and let $b S=\{b s: s \in S\}$. Prove that $\inf b S=b \sup S$ and $\sup b S=b \inf S$.

Proof: Let S be a nonempty bounded set in R. Thus S has an infimum and a supremum. Let $v=\sup S$. We need to show that $b v=\inf S$. Let $b s$ be an arbitrary element of $b S$. Then, $s \in S$ and so $s \leq v$. But this implies that $b s \geq b v$. Thus, $b v$ is a lower bound for $b S$. Let r be an arbitrary element of R such that $b v<r$. Then $v>r / b$. Since $v=\sup S$, there exists an element $s_{0} \in S$ such that $s_{0}>r / b$. But this implies that for the element $b s_{0} \in b S, b s_{0}<r$. Thus, we have shown that $b v=\inf b S=b \sup S$.

Let $w=\inf S$. We need to show that $b w=\sup S$. Let $b s$ be an arbitrary element of $b S$. Then, $s \in S$ and so $s \geq v$. But this implies that $b s \leq b w$. Thus, $b w$ is a lower bound for $b S$. Let r be an arbitrary element of R such that $b w>r$. Then $w<r / b$. Since $w=\inf S$, there exists an element $s_{0} \in S$ such that $s_{0}<r / b$. But this implies that, for the element $b s_{0} \in b S, b s_{0}>r$. Thus, we have shown that $b w=\sup b S=b \inf S$.
$\# 6$. Let A and B be bounded nonempty subsets of R, and let $A+B=\{a+b: a \in$ $A a n d b \in B\}$. Prove that $\sup (A+B)=\sup A+\sup B$ and $\inf (A+B)=\inf A+\inf B$.

Proof: Let A and B be bounded nonempty subsets of R. Then we know they both
have an infimum and a supremum. Let u_{A} and u_{B} be the supremum of A and B respectively. We want to show that $u_{A}+u_{B}=\sup (A+B)$. Let c be an arbitrary element of $A+B$. Then there exist $a \in A$ and $b \in B$ such that $c=a+b$. Now, $c=a+b \leq u_{A}+b \leq u_{A}+u_{B}$ where the first inequality follows from $u_{A}=\sup A$ and the second follows from $u_{B}=\sup B$. This shows that $u_{A}+u_{B}$ is an upper bound for $A+B$. Let $\epsilon>0$. We need to find an element $c_{0} \in A+B$ so that $c_{0}>u_{A}+u_{b}-\epsilon$. We know there exist elements $a_{0} \in A$ and $b_{0} \in B$ such that $a_{0}>u_{A}-\epsilon / 2$ and $b_{0}>u_{B}-\epsilon / 2$. Thus we pick $c_{0}=a_{0}+b_{0}>u_{A}-\epsilon / 2+u_{B}-\epsilon / 2=u_{A}+u_{B}-\epsilon$. Thus, we have shown $\sup (A+B)=\sup A+\sup B$.

Let u_{A} and u_{B} be the infimum of A and B respectively. We want to show that $w_{A}+w_{B}=\inf (A+B)$. Let c be an arbitrary element of $A+B$. Then there exist $a \in A$ and $b \in B$ such that $c=a+b$. Now, $c=a+b \geq w_{A}+b \geq w_{A}+w_{B}$ where the first inequality follows from $u_{A}=\inf A$ and the second follows from $u_{B}=\inf B$. This shows that $u_{A}+u_{B}$ is a lower bound for $A+B$. Let $\epsilon>0$. We need to find an element $c_{0} \in A+B$ so that $c_{0}<w_{A}+w_{b}+\epsilon$. We know there exist elements $a_{0} \in A$ and $b_{0} \in B$ such that $a_{0}<w_{A}+\epsilon / 2$ and $b_{0}<w_{B}+\epsilon / 2$. Thus we pick $c_{0}=a_{0}+b_{0}<w_{A}+\epsilon / 2+w_{B}+\epsilon / 2=u_{A}+u_{B}+\epsilon$. Thus, we have shown $\inf (A+B)=\inf A+\inf B$.
\# 10. Let X and Y be nonempty sets and let $h: X \times Y \rightarrow R$ have bounded range in R. Let $f: X \rightarrow R$ and $g: Y \rightarrow R$ be defined by

$$
f(x)=\sup \{h(x, y): y \in Y\}, g(y)=\inf \{h(x, y): x \in X\} .
$$

Prove $\sup \{g(y): y \in Y\} \leq \inf \{f(x): x \in X\}$.
Proof. Since h is bounded, we know f and g are well-defined and are themselves bounded. Let $u=\sup g$. In order to show that $u \leq \inf f$ it is enough to show that $u \leq f(x)$ for all $x \in X$. Let $\epsilon>0$. We know there exists a $y_{0} \in Y$ such that $u-\epsilon<g\left(y_{0}\right)$. But, by the definition of $g, g\left(y_{0}\right) \leq h\left(x, y_{0}\right)$ for all $x \in X$. But, by the definition of $f, f(x) \geq h\left(x, y_{0}\right)$ for all $x \in X$. Thus, for every $\epsilon>0$ and every $x \in X, u-\epsilon<g\left(y_{0}\right) \leq h\left(x, y_{0}\right) \leq f(x)$. Thus, $u \leq f(x)$ for every $x \in X$ which is what we needed to show.

Section 2.5
\# 6. If $I_{1} \supseteq I_{2} \supseteq \cdots \supseteq I_{n} \supseteq \cdots$ is a nested sequence of intervals and if $I_{n}=\left[a_{n}, b_{n}\right]$, show $a_{1} \leq a_{2} \leq \cdots \leq a_{n} \leq \cdots$ and $b_{1} \geq b_{2} \geq \cdots \geq b_{n} \geq \cdots$.

Proof. We will show that $a_{k} \leq a_{k+1}$ for all $k \in N$. We know $a_{k+1} \in I_{k+1} \subseteq I_{k}$ by assumption. So, $a_{k+1} \in I_{k}$. But, by definition of $I_{k}, a_{k} \leq a_{k+1} \leq b_{k}$. So, $a_{k} \leq a_{k+1}$. Next we will show that $b_{k} \geq b_{k+1}$ for all $k \in N$. We know $b_{k+1} \in I_{k+1} \subseteq I_{k}$ by assumption. So, $b_{k+1} \in I_{k}$. But, by definition of I_{k}, $a_{k} \leq b_{k+1} \leq b_{k}$. So, $b_{k} \geq b_{k+1}$.
$\# 7$. Let $I_{n}=[0,1 / n]$ for $n \in N$. Show $\cap_{n=1}^{\infty} I_{n}=\{0\}$.
Proof. By definition, $0 \in[0,1 / n]=I_{n}$ for all $n \in N$. So $\{0\} \subseteq \cap_{n=1}^{\infty} I_{n}$. Let $x \in \cap_{n=1}^{\infty} I_{n}=\{0\}$. We need to show that $x=0$. By our choice of x, we know $0 \leq x \leq 1 / n$ for all $n \in N$. But we know that for every $\epsilon>0$, there exists $n_{\epsilon} \in N$ such that $1 / n_{\epsilon}<\epsilon$. Thus, for every $\epsilon>0$ there exists $n_{\epsilon} \in N$ such that $0 \leq x \leq 1 / n_{\epsilon}<\epsilon$ which implies $x=0$.
\# 9. Let $K_{n}=(n, \infty)$ for $n \in N$. Show $\cap_{n=1}^{\infty} K_{n}=\emptyset$.
Proof. We will proceed by contradiction. Assume there exists a real number $x \in \cap_{n=1}^{\infty} K_{n}$. By the Archimedean Property, we know there exists a natural number n_{0} such that $x<n_{0}$. But this implies that $x \notin K_{n_{0}}$. This contradicts our choice of x. Thus, there is no real number $x \in \cap_{n=1}^{\infty} K_{n}$ and so $\cap_{n=1}^{\infty} K_{n}=\emptyset$.

