
homework #3 solutions

Section 2.4

#2. If S = {1/n− 1/m : n,m ∈ N}, find inf S and sup S.

Answer. We claim inf S = −1. Let 1/n− 1/m be an arbitrary element in S. Then,
1/n− 1/m ≥ 1/n− 1 > −1. So −1 is a lower bound for S.

Let ε > 0. By Corollary 2.4.5, there exists n0 ∈ N such that 1/n0 < ε. Now,
1/n0 − 1 < ε− 1 = −1 + ε and 1/n0 − 1 ∈ S. Thus, −1 = inf S.

We claim sup S = 1. Note that S = −S and apply homework problem #5 from
section 2.3 in which you proved inf S = − sup{−s : s ∈ S}. We get −1 = inf S =
− sup{−s : s ∈ S} = − sup S which implies sup S = 1.

#4.b. Let S be a nonempty bounded set in R. Let b < 0 and let bS = {bs : s ∈ S}.
Prove that inf bS = b sup S and sup bS = b inf S.

Proof: Let S be a nonempty bounded set in R. Thus S has an infimum and a
supremum. Let v = sup S. We need to show that bv = inf S. Let bs be an arbitrary
element of bS. Then, s ∈ S and so s ≤ v. But this implies that bs ≥ bv. Thus,
bv is a lower bound for bS. Let r be an arbitrary element of R such that bv < r.

Then v > r/b. Since v = sup S, there exists an element s0 ∈ S such that s0 > r/b.

But this implies that for the element bs0 ∈ bS, bs0 < r. Thus, we have shown that
bv = inf bS = b sup S.

Let w = inf S. We need to show that bw = sup S. Let bs be an arbitrary element
of bS. Then, s ∈ S and so s ≥ v. But this implies that bs ≤ bw. Thus, bw is a
lower bound for bS. Let r be an arbitrary element of R such that bw > r. Then
w < r/b. Since w = inf S, there exists an element s0 ∈ S such that s0 < r/b. But
this implies that, for the element bs0 ∈ bS, bs0 > r. Thus, we have shown that
bw = sup bS = b inf S.

# 6. Let A and B be bounded nonempty subsets of R, and let A+B = {a+b : a ∈
Aandb ∈ B}. Prove that sup(A+B) = sup A+sup B and inf(A+B) = inf A+inf B.

Proof: Let A and B be bounded nonempty subsets of R. Then we know they both



have an infimum and a supremum. Let uA and uB be the supremum of A and B

respectively. We want to show that uA + uB = sup(A + B). Let c be an arbitrary
element of A + B. Then there exist a ∈ A and b ∈ B such that c = a + b. Now,
c = a+b ≤ uA+b ≤ uA+uB where the first inequality follows from uA = sup A and
the second follows from uB = sup B. This shows that uA+uB is an upper bound for
A + B. Let ε > 0. We need to find an element c0 ∈ A + B so that c0 > uA + ub− ε.
We know there exist elements a0 ∈ A and b0 ∈ B such that a0 > uA − ε/2 and
b0 > uB − ε/2. Thus we pick c0 = a0 + b0 > uA − ε/2 + uB − ε/2 = uA + uB − ε.

Thus, we have shown sup(A + B) = sup A + sup B.

Let uA and uB be the infimum of A and B respectively. We want to show that
wA + wB = inf(A + B). Let c be an arbitrary element of A + B. Then there exist
a ∈ A and b ∈ B such that c = a + b. Now, c = a + b ≥ wA + b ≥ wA + wB

where the first inequality follows from uA = inf A and the second follows from
uB = inf B. This shows that uA + uB is a lower bound for A + B. Let ε > 0. We
need to find an element c0 ∈ A + B so that c0 < wA + wb + ε. We know there exist
elements a0 ∈ A and b0 ∈ B such that a0 < wA + ε/2 and b0 < wB + ε/2. Thus
we pick c0 = a0 + b0 < wA + ε/2 + wB + ε/2 = uA + uB + ε. Thus, we have shown
inf(A + B) = inf A + inf B.

# 10. Let X and Y be nonempty sets and let h : X × Y → R have bounded range
in R. Let f : X → R and g : Y → R be defined by

f(x) = sup{h(x, y) : y ∈ Y }, g(y) = inf{h(x, y) : x ∈ X}.
Prove sup{g(y) : y ∈ Y } ≤ inf{f(x) : x ∈ X}.

Proof. Since h is bounded, we know f and g are well-defined and are themselves
bounded. Let u = sup g. In order to show that u ≤ inf f it is enough to show
that u ≤ f(x) for all x ∈ X. Let ε > 0. We know there exists a y0 ∈ Y such that
u − ε < g(y0). But, by the definition of g, g(y0) ≤ h(x, y0) for all x ∈ X. But, by
the definition of f , f(x) ≥ h(x, y0) for all x ∈ X. Thus, for every ε > 0 and every
x ∈ X, u− ε < g(y0) ≤ h(x, y0) ≤ f(x). Thus, u ≤ f(x) for every x ∈ X which is
what we needed to show.

Section 2.5

# 6. If I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ · · · is a nested sequence of intervals and if In = [an, bn],
show a1 ≤ a2 ≤ · · · ≤ an ≤ · · · and b1 ≥ b2 ≥ · · · ≥ bn ≥ · · · .



Proof. We will show that ak ≤ ak+1 for all k ∈ N. We know ak+1 ∈ Ik+1 ⊆ Ik by
assumption. So, ak+1 ∈ Ik. But, by definition of Ik, ak ≤ ak+1 ≤ bk. So, ak ≤ ak+1.

Next we will show that bk ≥ bk+1 for all k ∈ N. We know bk+1 ∈ Ik+1 ⊆ Ik by
assumption. So, bk+1 ∈ Ik. But, by definition of Ik, ak ≤ bk+1 ≤ bk. So, bk ≥ bk+1.

# 7. Let In = [0, 1/n] for n ∈ N. Show ∩∞n=1In = {0}.

Proof. By definition, 0 ∈ [0, 1/n] = In for all n ∈ N. So {0} ⊆ ∩∞n=1In. Let
x ∈ ∩∞n=1In = {0}. We need to show that x = 0. By our choice of x, we know
0 ≤ x ≤ 1/n for all n ∈ N. But we know that for every ε > 0, there exists
nε ∈ N such that 1/nε < ε. Thus, for every ε > 0 there exists nε ∈ N such that
0 ≤ x ≤ 1/nε < ε which implies x = 0.

# 9. Let Kn = (n,∞) for n ∈ N. Show ∩∞n=1Kn = ∅.

Proof. We will proceed by contradiction. Assume there exists a real number
x ∈ ∩∞n=1Kn. By the Archimedean Property, we know there exists a natural number
n0 such that x < n0. But this implies that x 6∈ Kn0

. This contradicts our choice of
x. Thus, there is no real number x ∈ ∩∞n=1Kn and so ∩∞n=1Kn = ∅.


