
SecurityFocus HOME Infocus: Windows Forensics - A Case Study: Part Two 2003-03-14 16:18:40 -0900

http://www.securityfocus.com/infocus/1672 Page 1

!
 SFOnline

Windows Forensics - A Case Study: Part Two
by Stephen Barish
last updated March 5, 2003

This article is the second in a two-part series that will offer a case study of forensics in a Windows environment. In Part One, we
discussed host-based forensics techniques that first responders can use to detect attacks in relatively unprotected environments,
and how to begin collecting information to determine the appropriate response. Part One dealt with understanding what an attacker
was doing on an individual host. This article deals with determining the scope of the compromise, and understanding what the
attacker is trying to accomplish at the network level. Along the way, we'll be discussing some tools and techniques that are useful in
this type of detective work.

The Objective

As we left off last time, we had discovered the compromise (although we have yet to identify the compromise method), identified
the post-attack "fingerprint" of this particular group, and begun to understand what was happening in the enterprise. Before we
start with the eradication phase of our incident response, we really need to complete the identification phase: we have yet to
identify the initial compromise method, or to identify the scope of the compromise!

At this point in the investigation, we have reason to believe the attackers are making illicit use of the victim network to serve
content to their friends and neighbors. While it is possible any individual content provider might not mind serving some of this
material (the kind that isn't unlawful anyway), our victim network isn't getting paid for this service, and the attackers have a free
ride. Of more concern, the investigation so far has yielded information that indicates the attackers have compromised both local and
domain Administrator accounts in our enterprise.

Our objectives moving forward are simple. We want to determine how widespread the attacker's control over the network is, what
the initial compromise method was, and who the attacker is (if possible).

Developing a Toolkit

It would be great if all of us had fully monitored environments and the staff required to correlate and analyze all the security data
that can be extracted from such an enterprise. Unfortunately, the reality of the situation is that most of us do not have host and
network IDS systems, tiered firewalls, strong authentication and authorization systems, and logging is generally insufficient. The
problem gets worse in larger environments where the sheer amount of data and systems we're responsible for makes it extremely
difficult to perform even "near-real time" analysis. So when the inevitable incident occurs, we need a "quick and dirty" toolkit and
methodology to assess what is happening on the network, so we can make smart decisions on remediation measures.

I typically like to use a laptop loaded with both Windows 2000 (and the Windows 2000 Resource Kit) and Linux to conduct my
network assessments, and a variety of tools that operate in both environments.

These are just a few tools that are available, and represent my personal favorites - your mileage may vary. However, by using the
capabilities these tools and others like them offer, we can usually develop a good picture of what is happening on the network, and
what an attacker is doing.

Getting Started

Before we even consider launching a sniffer, we need to determine what data we're looking for in the network traffic. In a 100Mbps
switched network, it's trivial to overwhelm a sniffer, an analysis workstation, or an analyst. I like to start by looking at a victim box,
preferably one I know is still being used by the attacker. In a switched environment, which is really the worst case from a traffic
analyst's perspective, I like to set up on a mirror port tap into the network connection between the victim box and the switch.
Provided the switch supports full duplex mirroring of an individual port, it is highly preferable to monitor from the switch rather
than interrupt network connectivity, as it introduces much less of a signature that the attacker might notice. While it is possible to
insert a sniffer between the switch and the monitored host using an Ethernet tap, it's a distinct second choice. Given a choice, I
almost always prefer to set up on a mirror port.

The advantage to setting up on a mirror port rather than using an Ethernet tap is that you can quickly reconfigure the switch to
allow monitoring of another individual host or VLAN (provided the switch will support the desired configuration). Although mirroring
a highly utilized VLAN is almost sure to cause packet loss and collision problems on some switches, I've found the technique can

Tool Windows Unix
Network Sniffer(s) Windump, Ethereal Tcpdump, Ethereal, dsniff
IDS Software Snort Snort
Analysis Software EtherApe, tcpreplay
Port Scanners Fscan, nmapwin Nmap

SecurityFocus HOME Infocus: Windows Forensics - A Case Study: Part Two 2003-03-14 16:18:41 -0900

http://www.securityfocus.com/infocus/1672 Page 2

a highly utilized VLAN is almost sure to cause packet loss and collision problems on some switches, I've found the technique can
help get a "quick and dirty" view of what's going on. It's certainly not the most desirable solution from a long-term IDS perspective,
but it will help us monitor and analyze incoming traffic.

Windows Native Tools

For those of who grew up sniffing traffic in a largely Unix environment, there is good news! Most of the tools we are used to now
exist in some form or other in the Windows environment. For instance, the standard tcpdump utility used in most Unix distributions
has been ported with the name Windump. Windump makes use of a port of libpcap (unsurprisingly called WinPcap to interact with
the various network interfaces on a sniffing host virtually identically with tcpdump. Windump reads and writes the binary output of
tcpdump, so data can be collected and analyzed in either environment.

After downloading and installing Windump and setting up on the switch's mirror port, we can start capturing and pre-processing
traffic. The real power in using Windump is that it allows users to filter traffic prior to recording it in either text, ASCII, or hex
formats. By carefully crafting filters, we can minimize the amount of unnecessary traffic collected. For instance, the following
command with imbedded filter will find traffic between victim and target, and will record it to a file.

C:\> Windump -i1 host victim and target -w output

In reality, we rarely know what we'll be looking for during the initial data capture, so it is wisest to conduct full content monitoring.
In this case, we want to capture the entire packet, including any payload that may be of interest. Since the Maximum Transfer Unit
of Ethernet is 1500 bytes, we set our snaplength to 1500 bytes also using the -s switch. Finally, we use -n to prevent Windump
from converting host addresses and port numbers. This will prevent us from sending unintended packets to a DNS server that may
be owned by the attacker.

C:\> Windump -i1 -s1500 -n -w output

To analyze this data, we could use Windump to read output and pass it through a series of filters, but it is much more intuitive to
dump the resulting data into a more graphical analysis tool. My personal favorite is Ethereal. Ethereal provides a graphical interface
for analysts to point-and-click their way through the packet, its headers, and down into the data itself. I also like its ability to
decode certain protocols and reassemble TCP streams.

Ethereal has its own extremely powerful filter language, and because it automates a significant amount of the analysis, is often
easier to use than Windump. Regardless, either tool can be used to collect or conduct extremely sophisticated network analysis - if
you have a bit of time on your side.

What to Look For?

Just as when we conduct a host-based forensic analysis, we need to have a plan for what to investigate. While each incident will
have some unique aspects, there are certain general techniques that are common to almost all network analysis. These are:

SecurityFocus HOME Infocus: Windows Forensics - A Case Study: Part Two 2003-03-14 16:18:41 -0900

http://www.securityfocus.com/infocus/1672 Page 3

have some unique aspects, there are certain general techniques that are common to almost all network analysis. These are:

• Top Talkers
• Top Recipients
• Most Common Ports/Protocols
• Comparison with Known/Valid Traffic
• Coordination / Correlation with Forensic Examination

The first four elements in this list rarely surprise anyone, and in the case study we're investigating, would undoubtedly show the
majority of the activity. After all, if policy says NetBIOS should not exist on the management VLAN, its mere presence is a sign of
concern (see Part One of this series). However, coordinating and correlating network analysis with the results of the forensics
exercise is often overlooked. Recall from Part One that we found a file on the compromised server that, when executed, attempted
to make connections to multiple hosts on the network as the Administrator. By conducting full content monitoring of these hosts
and using Ethereal for analysis, we can begin to search for additional anomalies.

C:> Windump -i2 host TGT1 -s1500 -w output

After collecting data for a while (typically we collect one-hour snapshots that overlap by approximately one minute), we can begin
analyzing the resulting data. After loading output into Ethereal, we construct a filter to look for SMB packets (the protocol
underlying Windows File Sharing) and find a host of sessions to and from TGT1, all on the management interface (Interface 2 as
reported by Windump -D). As we inspect the traffic, we can see a series of attempts to authenticate to TGT1.

These appear to be requests for authentication to a Windows file share. The fact that we are seeing rapid connections from
winbox.victim.com to TGT1.victim.com is somewhat suspicious also, as it represents some automated process running the
connection attempts. By further filtering with Ethereal, and using its native protocol decoding capabilities, we can reconstruct the
following sequences:

FILTER: (ip.addr eq 192.168.254.2 and ip.addr eq 192.168.254.205) and (tcp.port eq 1095 and tcp.port eq 445)

Resulting Stream (Excerpt1)

00000389 00 00 01 48 ff 53 4d 42 73 00 00 00 00 18 07 c8 ...H.SMB s.......
00000399 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff fe
000003A9 01 08 50 00 0c ff 00 48 01 04 11 0a 00 01 00 00 ..P....H
000003B9 00 00 00 a6 00 00 00 00 00 d4 00 00 a0 0d 01 4eN
000003C9 54 4c 4d 53 53 50 00 03 00 00 00 18 00 18 00 66 TLMSSP..f
000003D9 00 00 00 18 00 18 00 7e 00 00 00 0c 00 0c 00 40~@
000003E9 00 00 00 0e 00 0e 00 4c 00 00 00 0c 00 0c 00 5aLZ
000003F9 00 00 00 10 00 10 00 96 00 00 00 15 82 88 e0 4cW
00000409 00 41 00 50 00 54 00 4f 00 50 00 73 00 62 00 61 .I.N.B.O .X.A.d.m
00000419 00 72 00 69 00 73 00 68 00 4c 00 41 00 50 00 54 .i.n.i.s .t.r.a.t
00000429 00 4f 00 50 00 a0 22 69 06 b4 2d 12 7f 00 00 00 .o.r.."i ..-. ...
00000439 00 00 00 00 00 00 00 00 00 00 00 00 00 8b e9 d5
00000449 b8 26 a1 f2 01 06 6b 6c e3 62 0d 7f fa 63 15 7f .&....kl .b. .c.
00000459 7d d6 64 30 5e d0 ca 7d 5f 30 5f 13 a4 a7 c3 15 }.d0^..} _0_.....
00000469 d1 fb 87 33 8b 00 57 00 69 00 6e 00 64 00 6f 00 ...3..W. i.n.d.o.
00000479 77 00 73 00 20 00 32 00 30 00 30 00 32 00 20 00 w.s. .2. 0.0.2. .
00000489 32 00 36 00 30 00 30 00 20 00 53 00 65 00 72 00 2.6.0.0. .S.e.r.
00000499 76 00 69 00 63 00 65 00 20 00 50 00 61 00 63 00 v.i.c.e. .P.a.c.
000004A9 6b 00 20 00 31 00 00 00 57 00 69 00 6e 00 64 00 k. .1... W.i.n.d.
000004B9 6f 00 77 00 73 00 20 00 32 00 30 00 30 00 32 00 o.w.s. . 2.0.0.2.
000004C9 20 00 35 00 2e 00 31 00 00 00 00 00 .5...1.

When Ethereal decodes the SMB datastream, it inserts a "." between characters because most low-level logging and communications
in Windows uses Unicode characters. In Unicode, US characters have "00" in the high order byte. Ethereal decodes all non-ASCII
characters as a "." The character stream "W.I.N.B.O.X.A.d.m.i.n.i.s.t.r.a.to.r." indicates the Administrator of winbox is attempting
to connect to the target (TGT1).

As expected, the Administrator is attempting to authenticate to TGT1. However, by scanning through the other packets of this
type, we uncovered several other usernames including INET_GLOBAL, a shared account for configuring Web servers, and
HELPTECH1, the username of a Help Desk employee, and USERCHUCK who was a high-level programmer in the company. While it
would be nice to jump to conclusions and simply grill USERCHUCK or HELPTECH1, we really have no proof of any wrongdoing by
either user at this point.

Ethereal is particularly useful when conducting analysis of this sort, as you can page rapidly through the hex representation of the
data packet (as shown above) and look for anomalies. However, in a real-world response scenario, it can take hours to start breaking
out usernames and passwords this way thanks to the density of data on the network. Although in some cases this type of analysis is
the only way to actually break back communications between compromised hosts and the attackers, there are some tools that make
life even easier on the analyst. Mike Davis has ported Dug Song?s popular dsniff package to Windows (http://www.datanerds.net/~
mike/), which will decode usernames and passwords for a whole host of Internet protocols including FTP, Telnet, HTTP, POP, NNTP,
IMAP, SNMP, LDAP, Rlogin, NFS, SOCKS, X11, IRC, AIM, CVS, ICQ, Napster, Citrix ICA, Symantec pcAnywhere, NAI Sniffer,

No. Time Source Destination Protocol Info
27 4.7277 winbox.victim.com TGT1.victim.com SMB TREE CONNECT ANDX REQUEST, NTLMSSP AUTH
35 5.2552 winbox.victim.com TGT1.victim.com SMB TREE CONNECT ANDX REQUEST, NTLMSSP AUTH
42 6.3521 winbox.victim.com TGT1.victim.com SMB TREE CONNECT ANDX REQUEST, NTLMSSP AUTH

SecurityFocus HOME Infocus: Windows Forensics - A Case Study: Part Two 2003-03-14 16:18:41 -0900

http://www.securityfocus.com/infocus/1672 Page 4

IMAP, SNMP, LDAP, Rlogin, NFS, SOCKS, X11, IRC, AIM, CVS, ICQ, Napster, Citrix ICA, Symantec pcAnywhere, NAI Sniffer,
Microsoft SMB, and Oracle SQL.

Looking for Intrusions

By now it should be fairly obvious what a time-consuming process analyzing network traffic can be when using simple tools like
Windump. Although Ethereal provides more useful information to the analyst, it really doesn't detect problems; rather, it just
provides us with strong analysis tools to investigate the traffic we've collected. When we expand our traffic analysis from the
individual host to the network at large, the problems of data saturation expand immensely. To counter this, we need employ some
more sophisticated tools.

Snort, a packet capture engine and lightweight IDS written by Martin Roesch is extremely useful for this type of analysis. Snort 1.9
binaries are available for the Win32 platform, including the ability to log to a MySQL or MSSQL database. With the addition of a
graphical front-end such as ACID I can develop statistical analyses automatically (top talkers, most common protocols, etc.) without
having to investigate each packet manually. Additionally, by deploying custom signatures and alerts, Snort can greatly reduce the
analysis burden. For instance, the rules below will detect any NetBIOS connections to drives F, G, H, and I on target systems (as we
saw in the batch file in Part One).

alert tcp any -> $HOME_NET 139 (msg:"NETBIOS SMB F$access"; flow:to_server,established; content:"\\F$|00 41 3a 00|";)

alert tcp any -> $HOME_NET 139 (msg:"NETBIOS SMB G$access"; flow:to_server,established; content:"\\G$|00 41 3a 00|";)

alert tcp any -> $HOME_NET 139 (msg:"NETBIOS SMB H$access"; flow:to_server,established; content:"\\H$|00 41 3a 00|";)

alert tcp any -> $HOME_NET 139 (msg:"NETBIOS SMB I$access"; flow:to_server,established; content:"\\I$|00 41 3a 00|";)

These rules will trigger alerts if any host attempts to mount network drives on the network address assigned to the variable
HOME_NET. By changing the value of HOME_NET as we change the traffic flowing the mirror port, we can slowly expand the
dimensions of our search. These signatures will ultimately allow us to monitor the entire Management VLAN for attempted NetBIOS
sessions. By modifying the rules or adding additional rules to look for more network resources, drives, etc., we can begin to build a
picture of how large the compromise is. Since we know that by policy no NetBIOS can be present on this VLAN (or any other
unencrypted traffic), any alerts represent probable attacker activity.

When I start monitoring network traffic this way, I almost always run two simultaneous captures. By running Snort in real-time with
a tailored signature set, I can monitor for ongoing activity and attacks (assuming I've been able to characterize the attacker's
behavior and develop custom signatures). But I need to continue full-content monitoring in parallel in order to assure I can conduct
more detailed off-line analysis if required. This can be extremely important as in most investigations we discover more about the
attacker's methods and behavior the longer the investigation goes on. By maintaining the original data, we can re-run it through
Snort with an updated rule set whenever we desire by simply running

C:\SNORT> snort -r Windumpfile -c C:\SNORT\snort.conf

Remember from Part One of this series that NetBIOS is not permitted on the Management VLAN. Therefore, any NetBIOS access
represents suspicious traffic at a minimum, and may range from misuse to abuse or compromise. We can use Ethereal to search
Windumpfile for the IP addresses that Snort identifies and look manually for usernames that may be compromised.

Wrapping It Up

The network side of the analysis is often much more time consuming than the "live approach" of a compromised host. As analysts,
we have to learn to discriminate between "normal" traffic and the traffic we believe to be abnormal and/or possibly malicious. In the
first part of this series, we said that we have the home-field advantage over our attackers. After reading the numerous emails I've
received from the field, I'd say that it may be more accurate to say that "we ought to have the home-field advantage." We ought to
know the policies our networks operate under, and those policies ought to be complied with. While this is not always the case in
reality, it is certainly something we ought to strive for.

Historically the Windows environment has been difficult to monitor, analyze, and secure, simply because of the lack of security tools
that run on the platform. Thanks to Sysinternals who distribute the ps utilities demonstrated in Part One, companies like
Foundstone and @Stake, and the open source world of WinPcap, Windump, Ethereal, Snort, etc. we are now gaining an increasing
ability to conduct the type of investigations from Windows that used to only be possible in the Unix environment.

The astute reader will note this series hinted at a possible source of the original compromise, but did not conclusively prove it. The
reality of the situation is that this sometimes happens, particularly in complex environments where there is poor access control and
monitoring. There are some data sources that were not investigated in this series, such as the Windows Event and Security Logs,
Web server logs, etc., and in a real incident these should absolutely be studied. Often there is sufficient data in the enterprise to
rule out certain kinds of attacks even if a robust network security monitoring environment isn't in place.

In our case study there were several "cardinal rules" of security that were violated. The batch file in Part One would not have
operated successfully as written if the Administrator account was not identical on each host. In several of the cases that inspired
this article, the Global Domain Administrator account was actually the same as each Local Administrator account, further reducing
the security of the enterprise as a whole. The second major problem was the bad monitoring environment. Clearly some
architectural changes and a redesign of the network are called for. Using some of the tools discussed in this series, and with minimal
cost, it is possible to build a rudimentary IDS capability, although monitoring it will probably take significant manpower.

At the risk of starting a religious discussion, Windows is neither more or less inherently secure than any other platform - with a few
arguable exceptions. It is one of the most attacked operating systems on the face of the planet, thanks to its wide proliferation. As a
result, its flaws are exploited often and well. If you are running a large Windows environment, my advice to you is to prepare

SecurityFocus HOME Infocus: Windows Forensics - A Case Study: Part Two 2003-03-14 16:18:41 -0900

http://www.securityfocus.com/infocus/1672 Page 5

result, its flaws are exploited often and well. If you are running a large Windows environment, my advice to you is to prepare
yourself for the inevitable compromise by doing the following:

• Build a Toolkit
- Fscan and Fport from Foundstone
- PS Utilities from Systinternals
- Trusted versions of Windows utilities for each version of Windows in your environment
- Dual-boot Windows / Linux Laptop loaded with Winpcap, Windump, Ethereal, and Snort+MySQL and Acid along with

Linux variants for the Linux partition
• Use Windump/tcpdump and tcpreplay + EtherApe to characterize the network
• Implement an IDS - Even a Rudimentary One

,/span>

Finally, take the time to prepare yourself. This goes beyond characterizing the environment, although that's a good first step. There
are some great books out there to get you started in network analysis, notably Network Intrusion Detection and Intrusion
Signatures and Analysis by Stephen Northcutt and company. The Anti-Hacker Toolkit and Incident Response are two other great
source texts (as mentioned in Part One). Most importantly, take the time to dig into the tools and practice using them. Learn their
features and filter languages in particular, as these will be infinitely useful to you the more you learn.

Relevant Links

Windows Forensics: A Case Study, Part One
Stephen Barish

Privacy Statement
Copyright © 1999-2003 SecurityFocus

