LL GRAMMARS

LL grammars are a subset of BNF (context-free) grammars. LL grammars impose restrictions on BNF grammars to simplify parsing. LL grammars may be implemented in top-down predictive parsing algorithms with complexity O(n), where n is the length of the input string. This includes both recursive-descent and table-driven algorithms based on syntax graphs. LL parsers operate by scanning the input from Left to right and producing a Leftmost derivation of the input string.

The conditions for an LL grammar are stated in terms of the FIRST and FOLLOW sets applied to the grammar rules:

If <X> ﬁ <V1> | <V2> | L | <Vn>, then FIRST(Vi) « FIRST(Vj) = f, " iπj.

If <Z> ﬁ {X} (zero or more X’s), FIRST(X) « FOLLOW(Z) = f.

No left recursion is allowed.

Briefly, FIRST(X) is the set of all terminals which can appear at the start of a string derived from X. FOLLOW(Z) is the union of FIRST(V) for all grammar rules of the form: X ﬁ aZV. In case X ﬁ aZ, FOLLOW(Z) … FOLLOW(X).

Example 3.1: Modified for LL Grammar

The FIRST condition for an LL grammar is violated by the RHS rules in Example 3.1 for <stmt_list> and <expression>. An LL grammar can be obtained by left-factoring these rules and converting the right recursion in <stmt_list> to repetition. Using EBNF, the modified rules are:

<stmt_list> Æ <stmt> { ; <stmt> }

<expression> Æ <var> [(+ | -) <var>]

