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Abstract

Given a graph G, we say S ⊆ V (G) is resolving if for each pair of distinct u, v ∈ V (G) there is a
vertex x in S where d(u, x) 6= d(v, x). The metric dimension of G is the minimum cardinality of all
resolving sets. For w ∈ V (G), the distance from w to S, denoted d(w, S), is the minimum distance
between w and the vertices of S. Given P = {P1, P2, . . . , Pk} an ordered partition of V (G) we say
P is resolving if for each pair of distinct u, v ∈ V (G) there is a part Pi where d(u, Pi) 6= d(v, Pi).
The partition dimension is the minimum order of all resolving partitions. In this paper we consider
relationships between metric dimension, partition dimension, diameter, and other graph parameters.
We construct “universal examples” of graphs with given partition dimension, and we use these to
provide bounds on various graph parameters based on metric and partition dimensions. We form
a construction showing that for all integers α and β with 3 ≤ α ≤ β + 1 there exists a graph G
with partition dimension α and metric dimension β, answering a question of Chartrand, Salehi, and
Zhang [3].

1 Introduction

Graphs will be simple, undirected, and finite with at least two vertices. For undefined terms and concepts
the reader is referred to [1]. Given G with a vertex v and an ordered set of vertices S = {v1, v2, . . . , vk}
the metric representation of v with respect to S is the vector r(v|S) := (d(v, v1), d(v, v2), . . . , d(v, vk)).
We say S differentiates vertices u and v if r(u|S) 6= r(v|S). A set is resolving if it differentiates each pair
of distinct vertices. Elements in a resolving set will be called landmarks. The metric dimension of G,
denoted dimM(G), is the minimum order of all resolving sets. Metric dimension is studied in a variety of
places including [4, 6, 8, 9] where it is sometimes referred to as the “location number”.

By “partition” we will mean an ordered partition. Given P = {P1, P2, . . . , Pk}, a partition of V (G),
the partition representation of v with respect to P is the vector r(v|P) = (d(v, P1), d(v, P2), . . . , d(v, Pk)).
We say P differentiates vertices u and v if r(v|P) 6= r(u|P). We say P is resolving if it differentiates
each pair of distinct vertices. The partition dimension, dimP(G), is the minimum order of all resolving
partitions. Partition dimension seems to have been introduced in [2] and further studied in [3].
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Figure 1: The graph H(3, 2). Vertices are labeled with the corresponding vectors.

By avoiding disconnected graphs we ensure that all distances are finite. Thus, when speaking of metric
and partition dimensions of graphs, we will restrict ourselves to connected graphs.

In this paper, we consider bounds on metric and partition dimension in terms of each other and other
graphical parameters.

2 A Universal Example

We now construct a graph H(p, s) with partition dimension p, having the property that each graph with
partition dimension p and diameter at most s is a subgraph of H(p, s).

Example 2.1. Given positive integers p, s, with p ≥ 2, let H(p, s) be the graph whose vertex set is those
vectors in {0, 1, 2, . . . , s}p that contain exactly one zero. Let two vertices be adjacent if they differ by at
most one in each coordinate.

The graph H(3, 2) is represented in Figure 1; each vertex is labeled with the corresponding vector.
Figure 2 shows H(3, 6).

Now, suppose G is a graph with diameter at most s. Let P = {P1, P2, . . . , Pp} be a resolving partition
of V (G). Let us say the natural embedding of G into H(p, s) with respect to P is the mapping that takes
each vertex v to r(v|P). We note that if G has a natural embedding into H(p, s), then dimP(G) ≤ p.
The mapping r : V (G) → V (H(p, s)) is injective and preserves adjacencies, although it may not preserve
nonadjacencies.

Now, given H(p, s), let Pi be those vertices with a zero in their ith coordinate. Suppose G is a
subgraph of H(p, s). Let Qi be V (G)∩Pi. Let us say G is a natural subgraph of H(p, s) if for each vertex
v and for each Qi where v 6∈ Qi, there exists a vertex u adjacent in G to v that is closer in H(p, s) to Qi.
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Figure 2: The graph H(3, 6), shown with a partition of its edge set into a planar graph and a linear
forest.
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Note that, if G is a natural subgraph, then each Qi must be nonempty. Further, {Q1, Q2, . . . , Qp} is
a resolving partition of V (G), and each vertex of G (where a vertex is considered as a vector) is equal
to its own partition representation. It follows that a subgraph G of H(p, s) is a natural subgraph if and
only if the mapping that takes v to v is a natural embedding.

Observation 2.2. Let G be a graph. If dimP(G) = p, and s is at least the diameter of G, then G is
isomorphic to a natural subgraph of H(p, s).

Observation 2.3. If a graph G is isomorphic to a natural subgraph of H(p, s), then dimP(G) ≤ p.

Observation 2.4. For all positive integers p, s, with p ≥ 2, we have dimP(H(p, s)) = p.

We use this “universal example” in some of the subsequent proofs. In each remark, this family of
graphs can be used to form an intuitive picture that illustrates the dynamics of the result.

3 Some Simple Bounds

Theorem 3.1. If a graph G has maximum degree ∆ and partition dimension p then

∆ ≤ 3p−1 − 1.

Proof. By Observation 2.2 we need only show the bound holds for all H(p, s). Consider a vertex v in
H(p, s). Some coordinate of v is zero, say the first. Suppose u is adjacent to v. Consider any coordinate
of u other than the first. This differs from the corresponding coordinate of v by at most one, so it has
one of three possible values. If coordinates 2 through p of u are nonzero, then the first coordinate of u is
zero. Otherwise, the first coordinate must be one. Thus, the first coordinate of u is determined by the
remaining p−1 coordinates. Since not all coordinates in u and v are the same, there are at most 3p−1−1
vertices adjacent to v. The desired bound now follows. ¤

The graphs H(p, s) show that the bound in Theorem 3.1 is sharp. We may also restate this bound:
For G an arbitrary graph, dimP(G) ≥ 1 + log3(∆ + 1).

Suppose S is a set of landmarks. We can form a resolving partition by putting each vertex of S in
a singleton and placing all other vertices in a separate part. Hence, as is observed in several places,
dimP(G) ≤ 1 + dimM(G). Applying the previous theorem we obtain an alternate proof to the following
result of [5].

Corollary 3.2 (Chartrand, Poisson, Zhang 2000 [5]). If G is a graph with maximum degree ∆,
then dimM(G) ≥ log3(∆ + 1).

Sharpness for this bound is given in [5].

Theorem 3.3. If a graph G has clique number ω and partition dimension p then

ω ≤ 2p−1.

Proof. By Observation 2.2 we need only show the bound holds for all H(p, s). Let T ⊆ V (G) be a set of
pairwise adjacent vertices in H(p, s). We show that |T | ≤ 2p−1.

For 1 ≤ i ≤ p, the ith coordinates of each pair of vertices in T (considered as vectors) must differ by
at most one. Hence, at most two values are used in each coordinate of vertices in T .

Let u ∈ T . Some coordinate of u is zero, say the first. As in the proof of Theorem 3.1, it follows that
the first coordinate of each vertex in T is determined by the values of the other p− 1 coordinates. Since
there are at most two choices for each of coordinates 2 through p, we have |T | ≤ 2p−1. ¤

If s ≥ 2, and we consider H(p, s), vectors of the form (0, x2, x3, . . . , xp) with 1 ≤ xi ≤ 2, form a clique
of order 2p−1. By Observation 2.4 we have dimP(H(p, s)) = p, and so the bound in Theorem 3.3 is sharp.
As with Theorem 3.1, we can restate this bound: dimP(G) ≥ 1 + log2(ω).
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Figure 3: A family of graphs of arbitrarily high diameter, for which dimM(G+H) = dimM(G)+dimM(H).

Given disjoint graphs G and H, the join of G and H, denoted G + H, is the graph with vertex set
V (G) ∪ V (H) and edge set E(G) ∪ E(H) together with {uv : u ∈ V (G) ∧ v ∈ V (H) }. In [6] we find
the formula dimM(G + H) = dimM(G) + dimM(H), for all graphs G and H. But if we let G and H be
complete graphs, and note that dimM(Kn) = n − 1, then we see that this remark is less than accurate.
However, we can observe the following.

Remark 3.4. For all graphs G and H,

dimM(G + H) ≥ dimM(G) + dimM(H).

Proof. Suppose S is a set of landmarks in G + H. The diameter of G + H is at most two. Hence, the
distance in G+H between a vertex in V (G) and an element of S∩V (G) is zero, one, or two depending on
whether v is in S, adjacent to an element of S ∩ V (G), or otherwise. The distance in G between a vertex
v ∈ V (G) and a vertex u ∈ S ∩ V (G) is zero, one, or at least two depending upon whether dG+H(v, u) is
zero, one, or exactly two. The same relation holds between vertices of H and S∩V (H). Hence, S∩V (G)
is a set of landmarks for G and S ∩ V (H) is a set of landmarks for H. ¤

For most pairs of graphs we have checked, equality does not hold in the above remark. Clearly, if G
and H both have diameter two then equality must hold. Suppose G and H are graphs belonging to the
family described in Figure 3. Then dimM(G + H) = dimM(G) + dimM(H). Hence, there exist pairs of
graphs with arbitrarily large diameter where equality in Remark 3.4 holds.

4 Graphs With Low Dimension

If G has a vertex of degree greater than two, then by Theorem 3.1 it must have partition dimension at
least three. Hence, if the partition dimension equals two the graph must be a cycle or path. Further,
if G has {P1, P2} as a resolving partition, there cannot be two or more edges between P1 and P2, for
otherwise two vertices in one part would be distance one away from the other part. Thus, we have an
alternative proof to the following result of [3].

Remark 4.1 (Chartrand, Salehi, Zhang 2000 [3]). A connected graph G is a path if and only if
dimP(G) = 2.

Graphs with partition dimension three do not have such explicit structure. However, we show below
that a good deal of structure does exist.

Theorem 4.2. Let G be a graph. If dimP(G) = 3 then G has thickness at most two.

Proof. By Observation 2.2, it suffices to show that H(3, s) has thickness at most two. We reference
Figure 2 where the edge set of H(3, 6) is shown decomposed into two planar subgraphs. The dark edges
in the figure form a linear forest. The remaining edges form a planar subgraph. Clearly, H(3, s) can be
similarly decomposed for all s, which establishes our result. ¤

Note that H(3, 6), in Figure 2, is nonplanar. Thus, the above result is sharp.
Graphs with partition dimension three have other properties that are easily established by observing

that they hold for H(3, s). For example, they have clique number at most four and do not contain K3,3
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as a subgraph. (Clique size could also be bounded using Theorem 3.3.) Noting that a graph with metric
dimension at most two must have partition dimension at most three, we obtain a simple proof of the
following result of [7].

Remark 4.3 (Khuller, Raghavachari, Rosenfeld 1996 [7]). If a graph G has metric dimension two
then G cannot have K5 nor K3,3 as a subgraph.

5 Coloring

A graph with bounded partition dimension also has bounded maximum degree, by Theorem 3.1. Hence,
it has bounded chromatic number. The same is true for graphs with bounded metric dimension. In this
section we produce tight bounds.

Theorem 5.1. If a graph G has metric dimension m, then

χ(G) ≤ 2m.

Proof. Let S be a set of landmarks of order m. Given a vertex v, let c(v) be r(v|S) (modulo 2). If u
and v are adjacent, then r(u|S) and r(v|S) differ by exactly one in some coordinate; c(u) and c(v) thus
differ in this coordinate. Hence, thinking of vectors as colors, c is a proper coloring of G. As there are m
coordinates, each with one of two values, G is 2m-colorable. ¤

In order to establish sharpness, we now construct a graph denoted J(k). Let A be those vectors in
{0, 1}k that contain exactly one zero. Let B be the set {1, 2}k. The vertex set will be the union of A
and B. Let two vertices be adjacent if, when considered as vectors, they differ by at most one in each
coordinate. Note that the set B induces a clique of order 2k. Further, A forms a resolving set.

Remark 5.2. The graph J(k) has metric dimension k and chromatic number 2k.

Proof. As in the proof of the preceding theorem, we can take the entries of each vertex modulo 2. This
creates a coloring with 2k colors. As this equals the clique size of J(k), we see χ(J(k)) = 2k. As A
forms a resolving set, dimM(J(k)) ≤ k. By Theorem 5.1, if dimM(J(k)) is less than k, then the chromatic
number of J(k) is less than 2k, a contradiction. ¤

Thus, Theorem 5.1 is sharp.
In the following, to flip a bit means to change its value. Hence, flipping 0 changes it to 1 and vice-versa.

Theorem 5.3. If a graph G has partition dimension p, then

χ(G) ≤ 2p−1.

Proof. Let G be such a graph. We construct a proper coloring of G using at most 2p−1 colors.
Let P be a resolving partition of V (G) where |P| = p. Label each vertex of G with its partition

representation modulo 2. Each label is a binary vector of length p. Now modify each vertex’s label as
follows. First flip all the bits lying to the left of the position corresponding to the part the vertex lies in.
Then, if the first bit in the resulting vector is 1, flip all the bits in the vector; otherwise leave all the bits
alone.

(As an example, suppose we number the positions from 1 to p. Say the partition representation
modulo 2 for some vertex is 0101, and this vertex lies in part 3 of the partition. We flip the bits to the
left of position 3 to obtain 1001. Since the first bit is a 1, we now flip all the bits to obtain the final label:
0110.)

The resulting labeling of the vertices is our coloring. Each vertex is labeled with a binary vector of
length p, whose first bit is a 0. Thinking of vectors as colors, there are at most 2p−1 colors used. It
remains to show that this is a proper coloring.
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Let x and y be adjacent vertices in G. We show that x and y receive distinct colors. There are two
cases to consider: In one case, x and y lie in the same part of P. In the other case, x and y lie in different
parts.

Case 1: Suppose x and y lie in the same part of P.
Say x and y lie in part i of P. Since x and y are adjacent, they must have different partition

representations modulo 2. When we flip all bits to the left of position i, the resulting vectors are still
different. Now, if neither x nor y get all their bits flipped, then they receive different colors. Similarly, if
they both get all their bits flipped, then they receive different colors. If one gets all its bits flipped and
the other does not, then their colors must have different values in position i, since both began with a 0
in this position. Hence, x and y receive distinct colors.

Case 2: Suppose x and y lie in different parts of P.
Say without loss of generality that x lies in part i and y lies in part j, with i < j. Because x and y

are adjacent, the values in positions i, j of x’s partition representation modulo 2 are 0, 1, respectively.
Further, y’s values are 1, 0. After flipping the bits to the left of the position corresponding to the part
a vertex lies in, x has 0, 1, while y has 0, 0 in the ith and jth coordinates. Thus, regardless of whether
each gets all its bits flipped, in the final color vectors, x has different values in positions i, j, and y has
the same values. Hence, x and y receive distinct colors. This completes the proof. ¤

If s ≥ 2, then the clique number of H(p, s) is 2p−1 (see the comments after the proof of Theorem 3.3).
Thus, χ(H(p, s)) = 2p−1, and so the above result is sharp.

6 Relationship Between Metric and Partition Dimension

In this section we investigate the relationship between metric and partition dimensions and how well they
approximate each other. Our key concern is whether the parameters can be far apart. We first present
several tools that will be used later.

A pair of vertices u,v is redundant if N(u) − {v} = N(v) − {u}. Clearly, if u and v are redundant
and w 6= u, v, then d(u,w) = d(v, w). Hence, if P is a resolving partition then no part can contain a
redundant pair. Likewise, if S is a set of landmarks then V (G) − S cannot contain a redundant pair.
This leads to the following observations.

Observation 6.1. In a resolving partition of the vertex set of a graph, no part contains a redundant
pair.

Observation 6.2. If S is a set of landmarks in a graph, and u,v is a redundant pair, then S contains u
or v.

If U is a set of pendant vertices, each of which is adjacent to a common neighbor v, then the elements
of U are pairwise redundant. Hence, the following.

Observation 6.3. If a graph G contains a cut-vertex v and U is a set of k isolated vertices in G − v,
then

(i) given distinct u and v in U , no resolving partition has u and v in the same part, and

(ii) every set of landmarks contains at least k − 1 elements of U .

In [3] the following is shown.

Remark 6.4 (Chartrand, Salehi, Zhang 2000 [3]). For all natural numbers α and β where dβ/2e+
1 ≤ α ≤ β + 1 there exists a graph G with dimP(G) = α and dimM(G) = β.

This led the authors of [3] to ask whether dimP(G) is always bounded below by ddimM(G)/2e + 1.
We will see that the answer to this question is “no”; the bound in Remark 6.4 can be improved.
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Figure 4: Example of the construction from Theorem 6.5: a graph with specified partition and metric
dimensions.

Theorem 6.5. Given natural numbers α and β where 3 ≤ α ≤ β + 1, there exists a graph G where
dimP(G) = α and dimM(G) = β.

Proof. If α = β +1 let G be a complete graph of order α. Note dimP(G) = α and dimM(G) = α− 1 = β.
So suppose α ≤ β. Let Q be a path on 1+β−(α−1) vertices. Attach α pendant vertices to one endpoint.
Attach to each other vertex of Q exactly two pendant vertices, as in Figure 4. Call this caterpillar G.
Let us call the end vertex adjacent to α pendants v. Since v is attached to α pendant vertices, we
can use Observation 6.3 to see that dimP(G) ≥ α. Suppose we put these α vertices into singleton sets
S1, S2, . . . , Sα. Each other vertex of Q is attached to two pendant vertices. For each such pair, say x and
y, put x in S1, and y in S2. Lastly, put all vertices of Q in S1. As {S1, S2, . . . , Sα} is a resolving partition
we conclude that dimP(G) = α.

There are α isolated vertices in G− v. If we remove from G any vertex of Q other than v we produce
two isolated vertices. Using Observation 6.3 we see that dimM(G) ≥ β. Take the set S2 described above
and add to it all but one of the other pendant vertices adjacent with v. This set of cardinality β is
resolving. Thus dimM(G) = β. ¤

By Remark 4.1, the 3 in the statement of Theorem 6.5 is best possible.
We now consider the order of graphs with small partition dimension and large metric dimension.

Remark 6.6. Let {ωn} be an integer sequence that goes to infinity arbitrarily slowly, where 3 ≤ ωn < n.
Then there exists a sequence of graphs {Gn} where

(i) Gn has order n,

(ii) dimP(Gn) = ωn, and

(iii) dimM(Gn) = n− o(n).

Proof. For a given n, set k = b(n − 1)/ωnc. Let j = (n − 1) − ωnk. Let Q be the path whose vertices
are u1, u2, . . . , uk, v1, v2, . . . , vj (or just u1, u2, . . . , uk if j = 0). To the vertex u1 attach ωn new pendant
vertices. To each other vertex ui (i = 2, . . . , k) attach ωn−1 new pendant vertices. Let Gn be the resulting
caterpillar, and note that it has order n. In a manner similar to that of the proof of Theorem 6.5, one
can show that dimP(Gn) = wn and dimM(Gn) = n− 2k − j = n− o(n). ¤

We might wonder whether there exists a sequence {Gn} where dimP(Gn) is uniformly bounded and
dimM(Gn) = n− o(n). Our next remark shows this is impossible.

Remark 6.7. If graph G has order n then

dimM(G) ≤
(

1− 1
dimP(G)

)
n.
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Proof. Suppose P is resolving partition of order p. Then some part of P contains at least n/p vertices.
Let A be one of these parts. Note that V (G)−A is a resolving set. ¤

Complete graphs show that Remark 6.7 is sharp in some sense. However, for fixed partition dimension,
the following improves the bound of Remark 6.7 for graphs of large order.

Theorem 6.8. Let G be a graph of order n and partition dimension p. Then

dimM(G) ≤
(

1− 1
p− 1

)
n +

2p−1

p− 1
.

Proof. Let P = {P1, P2, . . . , Pp} be a resolving partition of G. For each permutation σ of {1, 2, . . . , p}
we construct a set Tσ ⊆ V (G) as follows: Associate with every vertex v ∈ V (G) the vector

r(v, σ) :=
(
d(v, Pσ(1)), d(v, Pσ(2)), . . . , d(v, Pσ(p))

)
.

Note that every such vector has a zero in exactly one position. Let Tσ be the set of all vertices u where
r(u, σ) contains a one or two in a position to the right of its zero.

We proceed in two stages. We first verify that Tσ is a resolving set for G, for each σ. We then show
that the mean, over all permutations σ, of |Tσ| is at most the bound in the statement of this theorem.
This will complete our proof.
Claim 1. For each σ, Tσ is a resolving set.

Let x and y be vertices of G. We need to show that there is some v ∈ Tσ where d(x, v) 6= d(y, v).
Suppose x and y are in the same part in P. There must be another part that is closer to one, say x,

than the other. If we consider a shortest path between x and this part, we will see it contains an element
of Tσ and this element must be closer to x than y. To see this, note there must be some part Pσ(i) in P
such that d(x, Pσ(i)) 6= d(y, Pσ(i)). Without loss of generality, suppose d(x, Pσ(i)) < d(y, Pσ(i)). Select u
from Pσ(i) so that d(x, u) = d(x, Pσ(i)). Let Q be a shortest x,u-path. Let w be the vertex in Q adjacent
to u. Select j so that w ∈ Pσ(j). Note that j 6= i. If σ(j) < σ(i), then w ∈ Tσ. If σ(i) < σ(j) then
u ∈ Tσ. Further, d(x, u) 6= d(y, u), and d(x,w) 6= d(y, w). Thus, Tσ differentiates x and y.

So, suppose x and y lie in different parts of P. Without loss of generality, suppose the zero of r(x, σ)
is to the right of the zero in r(y, σ). Consider x = w0, w1, . . . , wk = y, a shortest x,y-path. Choose i as
large as possible so that the zero in r(wi, σ) is to the right of the zero in r(y, σ). Suppose the kth entry
of r(wi, σ) is zero. Note the kth entry of r(wi+1, σ) must be one, and, since this is to the right of the zero
in r(wi+1, σ), we note wi+1 ∈ Tσ.

If wi+1 = y then, since d(y, y) 6= d(x, y), Tσ differentiates x and y, and so we may suppose wi+1 6= y.
Consider wi+2. The zeros in r(wi+2, σ) and r(wi, σ) must be in different positions, since otherwise this
would contradict our assumption that i is the largest index for which wi has the desired property. Thus,
the position of the zero in r(wi, σ) must contain either a one or two in r(wi+2, σ). But this position comes
to the right of the zero in r(wi+2, σ). Thus, we see that wi+2 ∈ Tσ.

Thus, the minimum length x,y-path must contain two vertices, namely wi+1 and wi+2, that lie in Tσ.
One of these must lie at different distances from x and y. Hence, Tσ differentiates x and y and the proof
of Claim 1 is complete.
Claim 2. The mean, over all σ, of |Tσ| is at most

(
1− 1

p− 1

)
n +

2p−1

p− 1
.

Let A be the set of all vertices u where d(u, P ) ≤ 2 for all P ∈ P . Suppose σ is chosen randomly from
Sp, so that each permutation is chosen with equal probability. Let v ∈ V (G). What is the probability
that v lies in Tσ? If v ∈ A then v ∈ Tσ unless the zero in r(v, σ) lies in the last position. Thus, v lies in
A with probability 1 − 1/p. On the other hand, if v 6∈ A then r(v, σ) has at most p − 1 positions with
values in {0, 1, 2}, and so v lies in Tσ with probability at most 1− 1/(p− 1). We conclude the expected
value of |Tσ| is at most

9



(
1− 1

p

)
|A| +

(
1− 1

p− 1

)
(n− |A|)

=
(

1− 1
p− 1

)
n +

[(
1− 1

p

)
−

(
1− 1

p− 1

)]
|A|

=
(

1− 1
p− 1

)
n +

(
1

p(p− 1)

)
|A|

≤
(

1− 1
p− 1

)
n +

(
1

p(p− 1)

)
2p−1p

=
(

1− 1
p− 1

)
n +

2p−1

p− 1
.

This completes the proof. ¤

We now consider a construction that, for fixed p ≥ 3, shows the bound in Theorem 6.8 is close to best
possible. Let k ≥ 3. We form sets of distinct vertices, say S0, S1, . . . , Sk. Let S0 be a singleton, and let
each other set have cardinality p− 1. Add edges so that each Si ∪Si+1 induces a complete graph. Let us
call this graph K. Let n represent the order of K.

We observe the following:

(i) dimP(K) = p,

(ii) dimM(K) = (p− 2)k, and

(iii) n = (p− 1)k + 1.

Hence, dimM(K) = (1− 1/(p− 1)) (n−1). We note that this expression, for fixed p, is (1− 1/(p− 1))n+
O(1), as is the formula in the statement of Theorem 6.8. This leads to the following conjecture.

Conjecture 6.9. For every graph G of order n,

dimM(G) ≤
(

1− 1
dimP(G)− 1

)
n + c,

where c is some positive constant.

It seems likely that the conjecture holds with c = 2.

7 Diameter

In [3] it is shown that if G has order n and diameter s then n ≤ (1 + s)dimP(G). They ask if this bound
is sharp. We answer this question by modifying their proof to produce a tighter bound.

Theorem 7.1. If a graph G has order n, partition dimension p, and diameter s, then

n ≤ psp−1.

Proof. Let P = {P1, P2, . . . , Pp} be a resolving partition of minimum cardinality in a graph of diameter s.
Label each vertex v with r(v|P). Since labels are distinct, there must be at least n different labels. Since
v is in exactly one of the parts of P, the vector r(v|P) contains exactly one zero. All other coordinates
contain an integer from 1 to s. In placing a zero into a p-vector, there are p choices. Each of the
remaining p− 1 coordinates can be one of s different values. Applying the multiplication principle shows
n ≤ psp−1. ¤
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Equality holds in the preceding theorem for complete graphs. Yet, equality holds for nothing else:
Suppose equality holds for some p and some graph G of order n. Let P = {P1, P2, . . . , Pp} be a resolving
partition of V (G). Given a vector w = (x1, x2, . . . , xp) where each element is between zero and s,
inclusive, and exactly one element is zero, there must be a vertex w for which r(w|P) = w. Let u and
v be vectors that contain s in each coordinate, except u has a zero as its first coordinate and v has a
zero as its second coordinate. Let u and v be vertices of G where r(u|P) = u and r(v|P) = v. Let Q
be a shortest u,v-path. Then P1 contains at least s vertices of Q, as does P2. Hence, Q has at least 2s
vertices, and so d(u, v) ≥ 2s− 1; G cannot have diameter s unless s = 1.

Finding general, sharp bounds on the order of a graph with given partition dimension and diameter
may be difficult, but we can solve the diameter-two case.

First, we prove the following lemma (which we suspect may be well known). A family F of sets is
intersecting if, for all A and B in F , A ∩B is nonempty.

Lemma 7.2. Let F be an intersecting family of distinct subsets of a set of cardinality n ≥ 2. If n is
even, say n = 2k for some integer k, then

∑

A∈F
|A| ≤ k

[(
2k − 1

k

)
+ 22k−1

]
.

Similarly, if n = 2k + 1, then

∑

A∈F
|A| ≤ (2k + 1)

[(
2k − 1

k

)
+ 22k−1

]
.

Further, both of these inequalities are sharp.

Proof. Let X be a set of cardinality n ≥ 2. Let F be a family of subsets of X, containing all subsets of
X with cardinality greater than n/2. If n is even, then, in addition, F contains each set of cardinality
n/2 that includes some fixed e ∈ X.

Clearly, F is an intersecting family. Note that, for each T ⊆ X, F contains either T or X−T ; further,
if these have different sizes, then F contains the larger. Since no intersecting family can contain both T
and X − T , we see that F attains the maximum value of

∑
A∈F |A|, for an intersecting family.

It is not hard to verify that
∑

A∈F |A| is equal to the appropriate bound in the statement of the
lemma. ¤

Theorem 7.3. The maximum order of a graph with diameter two and partition dimension p ≥ 2 is

k

[(
2k − 1

k

)
+ 22k−1

]
, if p = 2k,

and

(2k + 1)
[(

2k − 1
k

)
+ 22k−1

]
, if p = 2k + 1.

Proof. First we establish that the quantities in the statement of the theorem are upper bounds. Let G be
a graph with diameter two and partition dimension p. Let P = {P1, P2, . . . , Pp} be a resolving partition.
For each vertex v, let S(v) be the set of all integers k (1 ≤ k ≤ p) for which the kth coordinate of r(v|P)
does not equal two. Let H = {S(v) : v ∈ G }. We will proceed by showing that H is an intersecting
family and then applying Lemma 7.2.

Let u, v be vertices of G. Since G has diameter two, there exists a vertex w of G so that both u and
v are either adjacent to, or equal to, w. The vector r(w|P) must have a zero in some coordinate. The
vectors r(u|P) and r(v|P) cannot have a two in this same coordinate. Thus, this coordinate lies in both
S(u) and S(v), and so these two sets have nonempty intersection. Hence H is intersecting. Now suppose
S ∈ H. We can bound the number of vertices u for which S = S(u) by noting that there are |S| places
to put a zero in r(u|P) and |S| − 1 places for a one. All other entries of r(u|P) are two. Hence, there are
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at most |S| vertices v ∈ G with S(v) = S, and so the order of G is bounded above by
∑

S∈H |S|. Thus,
by Lemma 7.2 the order of G is bounded above by the quantity in the statement of the theorem.

It remains to show that the upper bounds we have established are sharp; we will use the graphs
H(p, s) defined in Example 2.1. Let n = p, and let F be an intersecting family as described in the proof
of Lemma 7.2. Based on F , we now construct a subgraph G of H(p, 2) having the desired properties.
For a vertex v ∈ H(p, 2), let T (v) be the set of coordinates of v that are less than two. Given A ∈ F ,
let T−1(A) = { v : T (v) = A }. Note that |A| = |T−1(A)|, since there are |A| choices for where to
put the zero coordinate. Let G be the subgraph of H(p, 2) induced by

⋃
A∈F T−1(A). Then |V (G)| =∑

A∈F |T−1(A)| = ∑
A∈F |A|, giving the desired order by Lemma 7.2.

To see that dimP(G) = p, note first that F is closed under taking supersets, and so G is a natural
subgraph of H(p, 2); thus dimP(G) ≤ p, by Observation 2.3. If dimP(G) were strictly less than p, then
the order of G would be too small, by the first part of this proof; thus dimP(G) = p. To see that G has
diameter two, select vertices u and v from G. Suppose u ∈ T−1(A) and v ∈ T−1(B). Let j be a common
element of A and B. Let w be the vertex of H(p, 2) that contains only ones, except a zero in the jth
coordinate. Then u and v are both a distance of at most one away from w. Hence, G has diameter at
most two. ¤

Determining the maximum order of a graph with given partition dimension and diameter appears to
be more difficult when the diameter exceeds two.

Problem 7.4. Determine, for each p and s, the maximum order of a graph having diameter s and
partition dimension p.

We conclude with a construction of graphs with fixed diameter and partition dimension, and large
order. Given natural numbers p and s, we construct a subgraph K(p, s) of H(p, s) (defined in Exam-
ple 2.1). Let V be those vertices in H(p, s) with either zero or one in their first position. There are sp−1

vertices having zero in their first position and (p−1)sp−2 vertices having one in their first position, since,
in such a vertex, there are p−1 possible places for the zero. Hence, |V | = sp−1 +(p−1)sp−2. Let K(p, s)
be the subgraph of H(p, s) induced by V . We note that K(p, s) has diameter s. Further, K(p, s) is a
natural subgraph of H(p, s) and thus has partition dimension at most p, by Observation 2.3. Counting
the number of vertices in K(p, s) gives the following.

Remark 7.5. For given p and s, there exists a graph of order (s + p − 1)sp−2 having diameter s and
partition dimension p.

By Theorem 7.1 and Remark 7.5, we have the following partial answer to Problem 7.4.

Corollary 7.6. Given p and s, the maximum order of a graph with partition dimension p and diameter
s is between (s + p− 1)sp−2 and psp−1, inclusive.
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