
Prolog: Interaction

CS 331 Programming Languages

Lecture Slides

Friday, April 18, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-04-18 CS 331 Spring 2025

Unit Overview
The Prolog Programming Language

Topics

▪ PL feature: execution model

▪ PL category: logic PLs

▪ Introduction to Prolog

▪ Prolog: simple programming

▪ Prolog: lists

▪ Prolog: flow of control

▪ Prolog: interaction













2

Review

2025-04-18 CS 331 Spring 2025 3

Review
Prolog: Flow of Control [1/3]

How do we do repetition in Prolog?

▪ Using an encapsulated list operation.
▪ We wrote map, filter, and zip in an earlier topic.

▪ Repeating an operation directly, using recursion.
▪ We wrote print_squares/2.

▪ Using a traditional loop construction—which we can write ourselves.

▪ We wrote a for-loop predicate myFor/3 and used it in print_squares2/2.
(The functionality of myFor/3 is already available in SWI-Prolog in the

form of between/3.)

2025-04-18 CS 331 Spring 2025

For code, see flow.pl.

4

Review
Prolog: Flow of Control [2/3]

Prolog includes one non-logical “cheat”: the cut (!).

▪ It takes no arguments.

▪ It always succeeds.

▪ Once it succeeds, backtracking past the cut is not allowed, for the
current goal.

Cut can be used in a number of ways:

▪ To write the equivalent of a C++ break.

▪ We wrote print_near_sqrt/1.

▪ To do selection (like if/else).

▪ We wrote test_big/1.

▪ To ensure that only one fact/rule is used for any particular goal.

▪ We wrote gcd2/3.

▪ To write negation.
▪ We wrote not/1 (like the standard \+/1).

2025-04-18 CS 331 Spring 2025

For code, see flow.pl.

5

Review
Prolog: Flow of Control [3/3]

We can repeat forever by succeeding, and then recursing.

▪ We wrote myRepeat/0 (which is already available in SWI-Prolog in
the form of repeat/0).

But this is useless unless we have functionality available that is
nondeterministic: it can give different results for the same
input.

One way to get nondeterminism involves reading console input
from the user. Next we take a brief look at this.

2025-04-18 CS 331 Spring 2025

For code, see flow.pl.

6

Prolog: Interaction

2025-04-18 CS 331 Spring 2025 7

Prolog: Interaction
Preliminaries

Some more useful things:

read/1

Always succeeds. As a side effect, reads a Prolog term—which must be
followed by a period (.)—from standard input. Unifies this with its
argument.

This is quick-and-dirty input. As a full-featured PL, SWI-Prolog can, of
course, do ordinary input of a line, with conversion to (say) a number.
But that style of input is too complicated to be worth the time for us.

flush/0

Always succeeds. As a side effect, ensures that previous writes have
completed. Do this before a read, if there are prior write calls.

2025-04-18 CS 331 Spring 2025

For code from this topic,
see interact.pl.

8

Prolog: Interaction
Example [1/4]

Now we have all the pieces necessary to write simple interaction in
Prolog.

TO DO

▪ Write a predicate squares_interact/0 that does interaction: input
a number and print its square; then do it again, continuing until
zero is entered. Use repeat to do a while-true-break style of loop.

2025-04-18 CS 331 Spring 2025

Done. See interact.pl.

9

Prolog: Interaction
Example [2/4]

Suppose we wish to do a break in the middle of our loop, so that,
after entering zero, we exit without printing its square.

We can do this using a helper predicate for the rest of the loop.

rest_of_loop(X) :- X = 0, !.

rest_of_loop(X) :- write(…), …, fail.

squares_interactX :-

 repeat,

 …

 rest_of_loop(X), …

TO DO

▪ Rewrite squares_interact as squares_interact2, which can break
in the middle of its loop.

2025-04-18 CS 331 Spring 2025

Done. See interact.pl.

Because rest_of_loop
is a separate predicate,
we can give it multiple
rules, allowing for more
complex behavior.

10

Prolog: Interaction
Example [3/4]

We can get the effect of multiple rules with “;”, which does OR,
where “,” means AND. “;” has lower precedence than “,”.

rest_of_loop(X) :- X = 0, !.

rest_of_loop(X) :- write(…), …, fail.

We can rewrite the above as follows.

rest_of_loop(X) :-

 X = 0, !;

 write(…), …, fail.

2025-04-18 CS 331 Spring 2025

So maybe having
a separate helper

predicate is
unnecessary?

OR—this line and the next act
the same as separate rules.

11

Prolog: Interaction
Example [4/4]

Now we can move the body of the rule for our helper predicate into
the rule for our main predicate, placing it in parentheses.

rest_of_loop(X) :-

 X = 0, !;

 write(…), …, fail.

squares_interact2 :-

 repeat,

 …

 (), …

TO DO

▪ Rewrite squares_interact2 as squares_interact3, which does the
same thing, but has no helper predicate.

2025-04-18 CS 331 Spring 2025

Done. See interact.pl.

Because we can use parentheses,
the lower precedence of the OR does

not mess things up. We can say
A AND B AND (C OR D) AND E.

12

2025-04-18 CS 331 Spring 2025

Unit Overview
The Prolog Programming Language

Topics

▪ PL feature: execution model

▪ PL category: logic PLs

▪ Introduction to Prolog

▪ Prolog: simple programming

▪ Prolog: lists

▪ Prolog: flow of control

▪ Prolog: interaction















13

	Slide 1: Prolog: Interaction
	Slide 2: Unit Overview The Prolog Programming Language
	Slide 3
	Slide 4: Review Prolog: Flow of Control [1/3]
	Slide 5: Review Prolog: Flow of Control [2/3]
	Slide 6: Review Prolog: Flow of Control [3/3]
	Slide 7
	Slide 8: Prolog: Interaction Preliminaries
	Slide 9: Prolog: Interaction Example [1/4]
	Slide 10: Prolog: Interaction Example [2/4]
	Slide 11: Prolog: Interaction Example [3/4]
	Slide 12: Prolog: Interaction Example [4/4]
	Slide 13: Unit Overview The Prolog Programming Language

