
Prolog: Flow of Control

CS 331 Programming Languages

Lecture Slides

Wednesday, April 16, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-04-16 CS 331 Spring 2025

Unit Overview
The Prolog Programming Language

Topics

▪ PL feature: execution model

▪ PL category: logic PLs

▪ Introduction to Prolog

▪ Prolog: simple programming

▪ Prolog: lists

▪ Prolog: flow of control

▪ Prolog: interaction

2

Review

2025-04-16 CS 331 Spring 2025 3

Review
PL Category: Logic PLs

In logic programming, a computer program is a knowledge
base. It typically contains two kinds of knowledge.

▪ Facts. Statements that are known to be true.

▪ Rules. Ways to find other true statements from those known.

Execution is then driven by a query.

Logic programming languages are PLs based on the ideas
underlying logic programming. Prolog is the most important
logic programming language.

2025-04-16 CS 331 Spring 2025 4

Review
Prolog: Simple Programming [1/2]

Fact (this is true; usually in source file):

abc.

def(a, 28).

Rule (this is true if these are true; usually in source file):

ghi(X, Y) :- X =< 3, Y is X+5.

Query (is this true? OR how to make it true? interactive):

?- ghi(3, 8).

?- ghi(3, Y), Y > 9.

A query sets up one or more goals. Rule bodies set up subgoals.

2025-04-16 CS 331 Spring 2025 5

Review
Prolog: Simple Programming [2/2]

“\+” is a 1-argument predicate that works as a prefix operator. It
succeeds if its argument fails, so it means negation.

?- \+ 3 = 5.

true.

2025-04-16 CS 331 Spring 2025

We can write “\+” in Prolog.
Shortly, we will.

6

Review
Prolog: Lists

A few useful things:

_ (underscore)

Dummy variable. Unifies with anything, and indicates that its value
will not be used. (Prolog calls unused variables “singleton variables”
and warns you when it finds one. Use “_” to avoid such warnings.)

call/≥1

Arguments are either a predicate & its arguments or a single
compound term. Calls the predicate/term and succeeds if it succeeds.

2025-04-16 CS 331 Spring 2025 7

Prolog: Flow of Control

2025-04-16 CS 331 Spring 2025 8

Prolog: Flow of Control
Preliminaries

A few more useful things:

write/1

Argument is any term; input-only. Always succeeds. As a side effect,
writes its argument to standard output. An atom is written as a string.

nl/0

Always succeeds. Writes a newline to standard output.

true/0

Succeeds.

fail/0

Does not succeed. Therefore, always backtracks.

2025-04-16 CS 331 Spring 2025

For code from this topic,
see flow.pl.

9

Prolog: Flow of Control
Basic Repetition [1/2]

We have already seen encapsulated loops that iterate over lists:
map, filter, zip.

We can also repeat an operation directly, using recursion.

TO DO

▪ Write a Prolog predicate print_squares/2, so that, for example,
print_squares(4, 10) prints 42, 52, …, 102 in some nice format.
Use recursion.

2025-04-16 CS 331 Spring 2025

Done. See flow.pl.

10

Prolog: Flow of Control
Basic Repetition [2/2]

print_squares does repetition of a kind that we might write with a
for-loop in C++. But it is very special purpose. What about
writing a more general for-loop?

TO DO

▪ Write a Prolog predicate myFor that encapsulates the general idea of
a counted for-loop.

▪ Rewrite print_squares using this for-loop predicate.

The functionality of myFor is already available in SWI-Prolog, in the
form of between/3.

2025-04-16 CS 331 Spring 2025

Done. See flow.pl.

11

Prolog: Flow of Control
Cut [1/6]

In order to be truly full-featured programming languages, logic PLs
will “cheat” by including features that are not logical in nature.

Prolog’s cheat is the cut: “!”.

▪ This is written as “!”, but read as “cut”.

▪ It takes no arguments.

▪ It always succeeds.

▪ Once it succeeds, backtracking past the cut is not allowed, for the
current goal.

▪ Included in this: use of another fact or rule for the current goal is
not allowed.

Cut turns out to be very versatile—surprisingly versatile, I think.
We look at a few ways it can be used.

2025-04-16 CS 331 Spring 2025 12

Prolog: Flow of Control
Cut [2/6]

Cut can be used as the rough equivalent of a C/C++ break.

TO DO

▪ Write a Prolog predicate print_near_sqrt/1, which takes a positive
number x and prints the largest integer whose square is at most x.

2025-04-16 CS 331 Spring 2025

Done. See flow.pl.

13

Prolog: Flow of Control
Cut [3/6]

Cut can do something like if-then-else. Consider the C++ below.

void test_big(int n)

{

 if (n > 20)

 cout << n << " IS A BIG NUMBER!" << endl;

 else

 cout << n << " is not a big number." << endl;

}

TO DO

▪ Write a Prolog predicate that does essentially the same thing as
test_big, above.

2025-04-16 CS 331 Spring 2025

Done. See flow.pl.

14

Prolog: Flow of Control
Cut [4/6]

More generally, cut can make it easy to ensure that only one
fact/rule is used for any particular goal.

TO DO

▪ Rewrite our gcd predicate (from Prolog: Simple Programming) using
a cut.

Note that this new version avoids printing the annoying extra
“false” that our original gcd predicate prints when it succeeds.

2025-04-16 CS 331 Spring 2025

Done. See flow.pl.

15

Prolog: Flow of Control
Cut [5/6]

Cut allows us to write negation.

TO DO

▪ Write a predicate not, which takes a zero-argument predicate or a
compound term, and succeeds if it fails.

As we have seen, the functionality of not is already available in
SWI-Prolog, in the form of \+/1.

2025-04-16 CS 331 Spring 2025

Done. See flow.pl.

16

Prolog: Flow of Control
Cut [6/6]

A thought about cut: I have seen the necessity of the cut described
as a failure of the idea of logic programming: to make Prolog
work, a nonlogical construction was needed.

But I have another point of view. Prolog is a stream processor.

Terms can create new streams.

…, between(1, 10, X), …

Terms can filter streams.

…, X < 5, …

And a cut truncates a stream. When thought of in that way, it does
not seem out of place (I think).

2025-04-16 CS 331 Spring 2025 17

Prolog: Flow of Control
Other Repetition [1/2]

Our myFor predicate repeats by succeeding and then calling itself
recursively. On the way, it does some checking, so that it does
not repeat forever.

What if we do not do any checking?

TO DO

▪ Write a predicate myRepeat that repeats forever.

▪ Try using myRepeat.

The functionality of myRepeat is already available in SWI-Prolog, in
the form of repeat/0.

2025-04-16 CS 331 Spring 2025

Done. See flow.pl.

18

Prolog: Flow of Control
Other Repetition [2/2]

Predicate repeat does not alter variables. So it is largely useless
unless we have functionality that is nondeterministic: it can
give different results for the same input.

One form of nondeterminism is pseudorandom number generation.
SWI-Prolog’s facilities for this include function random, which
takes an integer n and returns a number in the range 0 .. n – 1.

TO DO

▪ Using repeat and random, write a predicate that outputs random

numbers until some condition becomes true.

▪ Make the above predicate end when it is done.

Another kind of nondeterministic functionality involves reading
console input from the user. We discuss this next time.

2025-04-16 CS 331 Spring 2025

random is a function!

Done. See flow.pl.

19

	Slide 1: Prolog: Flow of Control
	Slide 2: Unit Overview The Prolog Programming Language
	Slide 3
	Slide 4: Review PL Category: Logic PLs
	Slide 5: Review Prolog: Simple Programming [1/2]
	Slide 6: Review Prolog: Simple Programming [2/2]
	Slide 7: Review Prolog: Lists
	Slide 8
	Slide 9: Prolog: Flow of Control Preliminaries
	Slide 10: Prolog: Flow of Control Basic Repetition [1/2]
	Slide 11: Prolog: Flow of Control Basic Repetition [2/2]
	Slide 12: Prolog: Flow of Control Cut [1/6]
	Slide 13: Prolog: Flow of Control Cut [2/6]
	Slide 14: Prolog: Flow of Control Cut [3/6]
	Slide 15: Prolog: Flow of Control Cut [4/6]
	Slide 16: Prolog: Flow of Control Cut [5/6]
	Slide 17: Prolog: Flow of Control Cut [6/6]
	Slide 18: Prolog: Flow of Control Other Repetition [1/2]
	Slide 19: Prolog: Flow of Control Other Repetition [2/2]

