
Prolog: Lists

CS 331 Programming Languages

Lecture Slides

Monday, April 14, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-04-14 CS 331 Spring 2025

Unit Overview
The Prolog Programming Language

Topics

▪ PL feature: execution model

▪ PL category: logic PLs

▪ Introduction to Prolog

▪ Prolog: simple programming

▪ Prolog: lists

▪ Prolog: flow of control

▪ Prolog: interaction

2

Review

2025-04-14 CS 331 Spring 2025 3

Review
PL Category: Logic PLs

In logic programming, a computer program is a knowledge
base. It typically contains two kinds of knowledge.

▪ Facts. Statements that are known to be true.

▪ Rules. Ways to find other true statements from those known.

Execution is then driven by a query.

Logic programming languages are PLs based on the ideas
underlying logic programming. Prolog is the most important
logic programming language.

2025-04-14 CS 331 Spring 2025 4

Review
Prolog: Simple Programming — Facts, Queries, Rules, Goals

Fact (this is true; usually in source file):

abc.

def(a, 28).

Rule (this is true if these are true; usually in source file):

ghi(X, Y) :- X =< 3, Y is X+5.

Query (is this true? OR how to make it true? interactive):

?- ghi(3, 8).

?- ghi(3, Y), Y > 9.

A query sets up one or more goals. Rule bodies set up subgoals.

2025-04-14 CS 331 Spring 2025 5

Review
Prolog: Simple Programming — Negation

“\+” is a 1-argument predicate that works as a prefix operator. It
succeeds if its argument fails, so it means negation.

?- \+ 3 = 5.

true.

2025-04-14 CS 331 Spring 2025

We can write “\+” in Prolog.
Eventually, we will.

6

Prolog: Lists

2025-04-14 CS 331 Spring 2025 7

Prolog: Lists
Preliminaries [1/2]

A few useful things:

_ (underscore)

Dummy variable. Unifies with any term, and indicates that its value
will not be used. (Prolog calls unused variables “singleton variables”
and warns you when it finds one. Use “_” to avoid such warnings.)

var/1

Takes any argument. Succeeds if it is a free variable.

nonvar/1

Takes any argument. Succeeds if it is not a free variable.

call/≥1

Arguments are a predicate & its arguments OR a single compound
term. Calls the predicate/term and succeeds if it succeeds. Allows
calling of a predicate stored in a variable: X = foo, call(X, 3).

2025-04-14 CS 331 Spring 2025

For code from this topic,
see list.pl.

8

Prolog: Lists
Preliminaries [2/2]

Recall that we can simulate a function with
a Prolog predicate.

We can use the same idea to simulate
generalized functions: function-like
entities that can be used in reverse,
swapping input and output, or which can
have more than one output for a single
input, or some combination of these.

TO DO

▪ Write some Prolog predicates that simulate simple generalized
functions.

2025-04-14 CS 331 Spring 2025

ff
in out

ff(in, Out)

Function

gg
in/out in/out

Generalized

Functions

hh
in out1

out2

out3

9

Done. See list.pl.

Prolog: Lists
Lists & Tuples [1/3]

Prolog’s basic list syntax is much like that of Haskell and Python.

[1,2,3]

Items in Prolog lists are terms. Different kinds of terms can be
mixed in the same list.

?- X = [1, 'big dog', Y, 7+8, call, write(6), [3, 4.0]].

X = [1,'big dog',Y,7+8,call,write(6),[3,4.0]].

2025-04-14 CS 331 Spring 2025 10

Prolog: Lists
Lists & Tuples [2/3]

Prolog lists are structured just like Scheme lists. And Prolog has
the equivalent of Scheme dot (pair) notation, using “|”.

We can place the bar just before the final item, like dot in Scheme.

2025-04-14 CS 331 Spring 2025

Scheme Prolog

(1 2 3) [1, 2, 3]

() []

(1 (2 3)) [1, [2, 3]]

(1 . 2) [1 | 2]

(1 . (2 . ()) [1 | [2 | []]

Scheme Prolog

(1 2 3 . 4) [1, 2, 3 | 4]

Same as
(1 2)

Same as
[1, 2]

11

Prolog: Lists
Lists & Tuples [3/3]

Prolog also has tuples: comma-separated sequences. Parentheses
are not required, unless there are precedence issues. However, I
always include them.

?- X = (1,2,abc).

X = (1,2,abc).

?- X = [(1,2,3),4].

X = [(1,2,3),4].

All of the list & tuple notations can be used as patterns. That is, all
the different kinds of notation support unification.

TO DO

▪ Write Prolog predicates to find the head and tail of a list.

▪ Can we write each of these using a single
fact, not a rule?

2025-04-14 CS 331 Spring 2025 12

Done. See list.pl.

Prolog: Lists
Lists & Recursion

The basic list-recursion pattern that we saw in Haskell and Scheme
works well in Prolog, too:

▪ Base case: empty list.

▪ Recursive case: nonempty list. Do something with the head, and
make a recursive call on the tail.

TO DO

▪ Write a Prolog predicate to find the length of a list.

▪ Write a Prolog predicate to concatenate two lists.

▪ Can concatenation be written as a generalized function?

2025-04-14 CS 331 Spring 2025 13

Done. See list.pl.

Prolog: Lists
Lists & Encapsulated Loops

As in Haskell and Scheme, encapsulated loops work well in Prolog.

TO DO

▪ Write map in Prolog.

▪ Write filter in Prolog.

▪ Write zip in Prolog.

▪ Try our map with generalized functions.

2025-04-14 CS 331 Spring 2025 14

Done. See list.pl.

	Slide 1: Prolog: Lists
	Slide 2: Unit Overview The Prolog Programming Language
	Slide 3
	Slide 4: Review PL Category: Logic PLs
	Slide 5: Review Prolog: Simple Programming — Facts, Queries, Rules, Goals
	Slide 6: Review Prolog: Simple Programming — Negation
	Slide 7
	Slide 8: Prolog: Lists Preliminaries [1/2]
	Slide 9: Prolog: Lists Preliminaries [2/2]
	Slide 10: Prolog: Lists Lists & Tuples [1/3]
	Slide 11: Prolog: Lists Lists & Tuples [2/3]
	Slide 12: Prolog: Lists Lists & Tuples [3/3]
	Slide 13: Prolog: Lists Lists & Recursion
	Slide 14: Prolog: Lists Lists & Encapsulated Loops

