
Prolog: Simple Programming

CS 331 Programming Languages

Lecture Slides

Friday, April 11, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-04-11 CS 331 Spring 2025

Unit Overview
The Prolog Programming Language

Topics

▪ PL feature: execution model

▪ PL category: logic PLs

▪ Introduction to Prolog

▪ Prolog: simple programming

▪ Prolog: lists

▪ Prolog: flow of control

▪ Prolog: interaction

2

Review

2025-04-11 CS 331 Spring 2025 3

Review
PL Category: Logic PLs

In logic programming, a computer program is a knowledge
base. It typically contains two kinds of knowledge.

▪ Facts. Statements that are known to be true.

▪ Rules. Ways to find other true statements from those known.

Execution is then driven by a query.

Logic programming languages are PLs based on the ideas
underlying logic programming. Prolog is the most important
logic programming language.

There are also logic-programming libraries for PLs that support the
necessary constructions well enough (e.g., Python, Lisp-family).

2025-04-11 CS 331 Spring 2025 4

Review
Introduction to Prolog [1/2]

Prolog’s execution involves attempts to prove
things true using a strategy involving
unification in a backtracking search.

In most situations where we might expect to use a function, we
use a predicate in Prolog. These are different from our previous
notion of predicate (recall: a function that returns Boolean); a
Prolog predicate is something that we might prove to be true.

We can simulate functions using Prolog predicates.

Say we have a two-argument predicate isSquared, where
isSquared(3, 9) is true, while isSquared(3, 5) is not.

To find the square of 37, use a query: which values of X make
isSquared(37, X) true? (This is an example of where it is
important that X be a free variable.)

2025-04-11 CS 331 Spring 2025

Unification: making
two constructions the

same by binding
variables as necessary.

5

Review
Introduction to Prolog [2/2]

Prolog’s type system is similar to that of Lua and Scheme.
However, the notion of type is not specified precisely.

The basic kind of entity in Prolog is the term. Terms can be
divided into 4 categories:

▪ Number. Includes integer [325] and float [325.7 34.66e+4].

▪ “5.0” is a float literal. “5.” is an integer literal followed by a dot.

▪ Atom. A name [div_by_7 @:& 'Hello there!\n'].

▪ Atoms are used as names of predicates and operators, and as something

like string literals. An atom can also simply be itself.

▪ Variable. Like a C/C++ identifier starting with upper-case or
underscore [Value_8 _xyz3].

▪ Distinguishing free and bound variables is important.

▪ Compound term. Something that looks like a function call
[foo(A,3.2,'xy')] or various kinds of syntactic sugar around that:

▪ X = 3 is the same as =(X, 3)

▪ [1,2] is the same as '[|]'(1,'[|]'(2,[]))

2025-04-11 CS 331 Spring 2025 6

Prolog: Simple Programming

2025-04-11 CS 331 Spring 2025 7

Prolog: Simple Programming
General

Facts and rules generally go in a source file. Queries are entered
interactively.

Facts, rules, and queries all end with a period (.).

foo7(Ax, BB) :- Ax = 12, BB >= Ax. % This is a rule

Comments:

▪ Single-line: % … END-OF-LINE

▪ Multiline: /* … */

In SWI-Prolog we can enter facts and rules interactively, using a
virtual source file named “user”.

?- [user]. % Allow user to enter facts & rules

2025-04-11 CS 331 Spring 2025

For code from this topic,
see simple.pl.

Prolog prompt. Do not type this.

8

Prolog: Simple Programming
Facts, Queries, Rules, Goals [1/4]

A fact is written as an atom or compound term followed by a
period. A fact says that something is true.

abcd.

defg(a, X, 28).

A fact is generally legal as a query also. A query asks whether
something is true, and, if so, what variable values make it true.

2025-04-11 CS 331 Spring 2025

Here, abcd is a zero-argument predicate.
SWI-Prolog allows us to include an empty
parenthesized list [abcd().], but we
usually do not.

9

Prolog: Simple Programming
Facts, Queries, Rules, Goals [2/4]

A more complex query can be formed as a comma-separated list.
This asks whether all items are true, and, if so, what variable
values make them all true. Terms are dealt with in the order
given, backtracking and retrying as necessary.

?- eats(cat, X), eats(X, grain).

Any variable that is bound in a term remains bound to the same
value in all later terms.

A variable might be bound to a new value when execution
backtracks back to the term in which it was originally bound.

TO DO

▪ Write some facts in a source file.

▪ Do some queries.

2025-04-11 CS 331 Spring 2025

Done. See simple.pl.

10

Prolog: Simple Programming
Facts, Queries, Rules, Goals [3/4]

A rule looks like a fact, then “:-”, then a query. The term before
“:-” is the head of the rule; afterward is the body of the rule.

grandchild(A, B) :- child(A, X),

 child(X, B).

A rule says, essentially, that if the conditions in the body are true,
then the head is true.

Once again, in a rule, bound variables remain bound to the same
values in all later terms. When execution backtracks to the term
in which a variable was originally bound, the variable becomes
free—possibly to be bound to a new value.

2025-04-11 CS 331 Spring 2025

BodyHead

11

Prolog: Simple Programming
Facts, Queries, Rules, Goals [4/4]

A query sets up a series of goals: prove that each term in the
query is true, by unifying it with something known. If it is shown
to be true, then it succeeds; otherwise, it fails.

Unifying with a fact is straightforward.

For a rule, terms that unify with the head are those the rule might
be used to prove. The body gives the conditions that must be
satisfied, in order to do this proof. Each term in the body of the
rule then forms a subgoal.

TO DO

▪ Add rules to the source file.

▪ Do some more queries.

2025-04-11 CS 331 Spring 2025

Done. See simple.pl.

12

Prolog: Simple Programming
Conventions

Prolog has standard human-readable comments for predicates.

sq/2 means sq is a predicate with 2 arguments.

Arguments may be marked:

▪ + Input only (cannot be a free variable).

▪ - Output only (must be a free variable).

▪ ? Input or output.

Example: sq(+x, ?y)

TO DO

▪ Add appropriate comments to the code written so far.

2025-04-11 CS 331 Spring 2025

These conventions are used
in Prolog code comments,
language documentation,

and error messages.

Done. See simple.pl.

13

Prolog: Simple Programming
Negation

“\+” is a 1-argument predicate that works as a prefix operator. It
succeeds if its argument fails, so it means negation.

?- \+ 3 = 5.

true.

TO DO

▪ Try some negations.

▪ Write some rules involving negations.

2025-04-11 CS 331 Spring 2025

We can write “\+” in Prolog.
Eventually, we will.

Done. See simple.pl.

14

Prolog: Simple Programming
Numerical Computation [1/6]

Prolog will do numerical computation, but this is not part of its
normal unification. For example, the query “X = 3+5.” will give
the result “X = 3+5”, not “X = 8”.

To evaluate a numerical expression, use “is”. The expression is
the second argument, and it must not contain free variables.

?- is(X, 3+5).

X = 8.

“is” can be used as an infix operator.

?- X is 3+5.

X = 8.

?- 8 is 3+5.

true.

2025-04-11 CS 331 Spring 2025

A Prolog numerical
expression is actually a

compound term. The infix-
operator notation is syntactic

sugar over Prolog’s usual
function-call-like notation.

15

Prolog: Simple Programming
Numerical Computation [2/6]

The value of a variable can be an unevaluated expression.

?- X = 3+5, Y = 9+sqrt(X).

X = 3+5

Y = 9+sqrt(3+5).

“is” will evaluate such expressions.

?- X = 3+5, Y = 9+sqrt(X), Z is Y-7.

X = 3+5

Y = 9+sqrt(3+5)

Z = 4.8284271247461898.

2025-04-11 CS 331 Spring 2025 16

Prolog: Simple Programming
Numerical Computation [3/6]

+, -, *, and parentheses are as usual. / is floating-point division.
// is integer division. ** is exponentiation.

?- X is 9/4.

X = 2.25.

?- X is 9//4.

X = 2.

Find remainders with “mod”. This can be used as an infix operator.

?- X is mod(11, 4).

X = 3.

?- Y is 11 mod 4.

Y = 3.

2025-04-11 CS 331 Spring 2025

Like Python

17

Prolog: Simple Programming
Numerical Computation [4/6]

The following use function-call notation: sqrt exp log sin cos
tan asin acos atan ceiling floor (and others).

?- X is sqrt(5).

X = 2.2360679774997898

2-argument functions include min, max.

?- X is max(5, 8).

X = 8

2025-04-11 CS 331 Spring 2025 18

Prolog: Simple Programming
Numerical Computation [5/6]

Operators = \= mean unifiable and not unifiable, respectively.

Numeric comparisons are usable with function-call notation or as
infix operators. Both operands can be expressions, which are
evaluated. They cannot contain free variables.

Numeric equality & inequality: =:= =\=

Numeric ordered comparison operators are as usual, except that
they must not look like arrows; so <= becomes =<.

?- 3+5 =< 9+1.

true.

Operators == \== exist, but do something different. They test
(in)equality of ASTs, doing no unification or evaluation. Avoid
using these, unless you are sure they do what you want!

2025-04-11 CS 331 Spring 2025 19

Prolog: Simple Programming
Numerical Computation [6/6]

TO DO

▪ Write a Prolog predicate that computes the greatest common
divisor (GCD) of two nonnegative integers, using the Euclidean
Algorithm.

Comments

▪ We can have multiple facts and rules involving the same predicate.

▪ As in Haskell, and in Scheme macros, we can do a form of pattern
matching in Prolog. A query can only be unified with a fact, or the
head of a rule, if it matches in some sense.

▪ However, unlike the other kinds of pattern matching we have seen,
Prolog does not simply go with the first pattern that works; it tries
them all. This is why we need the various comparisons (e.g.,
“A > 0”) in the body of the rules for predicate gcd.

2025-04-11 CS 331 Spring 2025

Done. See simple.pl.

20

	Slide 1: Prolog: Simple Programming
	Slide 2: Unit Overview The Prolog Programming Language
	Slide 3
	Slide 4: Review PL Category: Logic PLs
	Slide 5: Review Introduction to Prolog [1/2]
	Slide 6: Review Introduction to Prolog [2/2]
	Slide 7
	Slide 8: Prolog: Simple Programming General
	Slide 9: Prolog: Simple Programming Facts, Queries, Rules, Goals [1/4]
	Slide 10: Prolog: Simple Programming Facts, Queries, Rules, Goals [2/4]
	Slide 11: Prolog: Simple Programming Facts, Queries, Rules, Goals [3/4]
	Slide 12: Prolog: Simple Programming Facts, Queries, Rules, Goals [4/4]
	Slide 13: Prolog: Simple Programming Conventions
	Slide 14: Prolog: Simple Programming Negation
	Slide 15: Prolog: Simple Programming Numerical Computation [1/6]
	Slide 16: Prolog: Simple Programming Numerical Computation [2/6]
	Slide 17: Prolog: Simple Programming Numerical Computation [3/6]
	Slide 18: Prolog: Simple Programming Numerical Computation [4/6]
	Slide 19: Prolog: Simple Programming Numerical Computation [5/6]
	Slide 20: Prolog: Simple Programming Numerical Computation [6/6]

