
PL Category: Logic PLs
Introduction to Prolog

CS 331 Programming Languages

Lecture Slides

Wednesday, April 9, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-04-09 CS 331 Spring 2025

Unit Overview
The Prolog Programming Language

Topics

▪ PL feature: execution model

▪ PL category: logic PLs

▪ Introduction to Prolog

▪ Prolog: simple programming

▪ Prolog: lists

▪ Prolog: flow of control

▪ Prolog: interaction

2

Review

2025-04-09 CS 331 Spring 2025 3

Review
PL Feature: Execution Model

There is always something that drives the execution of a program.

▪ There is some task the computer is attempting to perform.

▪ There is some strategy for carrying out the execution.

In C, the task is completing a call to function main. The strategy is
to carry out the commands in function main. If other functions
are called, these become subtasks.

To unify two constructions means to make them the same by
binding variables as necessary. For example, we can unify
[A, 6] and [4, B] by setting A to 4, and B to 6.

In the Prolog programming language (covered next), execution is
driven by the task of answering some query. The strategy
involves unification.

2025-04-09 CS 331 Spring 2025 4

PL Category: Logic PLs

2025-04-09 CS 331 Spring 2025 5

PL Category: Logic PLs
Background [1/4]

In the late 1960s, Stanford researcher Cordell Green proposed
representing a computer program in terms of logical statements.

This programming paradigm is known as logic programming.

In logic programming, a computer program can be thought of as a
knowledge base. It typically contains two kinds of knowledge.

▪ Facts. Statements that are known to be true.

▪ Rules. Ways to find other true statements from those known.

Execution is then driven by a query: essentially a question. The
computer attempts to answer the question using facts and rules.

Logic programming typically has no notion of falsehood. There
are statements the computer can prove to be true, and others
that it cannot. But some of those others might be true. Logic
programming is thus not so much about truth as provability.

2025-04-09 CS 331 Spring 2025 6

PL Category: Logic PLs
Background [2/4]

Here are some facts.

▪ Gil is a child of Ernest.

▪ Glenn is a child of Gil.

Here is a rule. (A, B, and C are free variables.)

▪ If A is a child of B, and B is a child of C, then A is a grandchild of C.

Here are some queries.

1. Is Glenn a grandchild of Ernest?

2. Is Ernest a grandchild of Glenn?

3. Is Glenn a grandchild of Bob?

The answer to query #1 is “yes”. This is provable.

It is not provable what the answers to queries #2 and #3 are.

These are real people, and the facts and the rule are actually true.

In terms of truth, query #2 gets “no”, while query #3 gets “yes”.

So truth and provability are different.

2025-04-09 CS 331 Spring 2025

Recall: a variable is free
if it is not bound to a value.

7

PL Category: Logic PLs
Background [3/4]

In the 1970s, programming languages based on logic-
programming concepts began to appear. These are logic
programming languages. Foremost among those was—and
still is—Prolog. Others include Mercury and Gödel.

Designing a practical PL based solely on logic has turned out to be
somewhere in the range from difficult to impossible. Logic PLs
nearly always “cheat” by including constructions that are not
logical in nature.

Some people would say that the effort to create a true logic-based
programming language has failed. I would say that the effort
was worthwhile, but what resulted was not what was originally
planned. I will have more to say about this later.

2025-04-09 CS 331 Spring 2025 8

PL Category: Logic PLs
Background [4/4]

Logic programming may be offered as a library—if a PL supports
the necessary constructions well.

Mainstream PLs with sufficient support have been rare until
recently. But there are now a number of actively maintained
logic-programming libraries for various mainstream PLs.

In particular, several logic-programming packages for the Python
programming language appear to be well spoken of (but I have
no experience with any of them). One also sees logic-
programming libraries for various Lisp-family PLs.

2025-04-09 CS 331 Spring 2025 9

PL Category: Logic PLs
Typical Characteristics

In a typical logic programming language:

▪ A program consists of facts and rules—or something very similar.

▪ Execution begins with a query, which establishes a goal: proving
the query true—or determining how to make it true. During
execution, various subgoals may be established.

▪ Execution is primarily interactive, typically based on a source file.

▪ Execution is about finding what can be proven—not what is true.

▪ So negation says something fails to be provable, not that it is false.

▪ Unification is the primary proof tool.

▪ Typing is dynamic and implicit.

2025-04-09 CS 331 Spring 2025 10

Introduction to Prolog

2025-04-09 CS 331 Spring 2025 11

Introduction to Prolog
History [1/2]

In the early 1970s, a group at the U. of Aix-Marseille (France), led
by Alain Colmeraur, began an effort to produce a logic
programming language, starting from Cordell Green’s ideas.

Their PL, first released in 1972, was called Prolog, short for
“PROgrammation en LOGique” (French: “programming in logic”).

Prolog was, and continues to be, the most important logic PL.

There was a flurry of interest in Prolog in the 1970s. This has
mostly faded, but an active—although relatively small—
community remains.

2025-04-09 CS 331 Spring 2025 12

Introduction to Prolog
History [2/2]

In 1987, a group at the University of Amsterdam released a Prolog
implementation called SWI-Prolog. (SWI = Sociaal-
Wetenschappelijke Informatica, which is Dutch, and means
informatics for social science). It is now available free on all
major platforms and is actively maintained. We will use this.

In 1995, an ISO standard for Prolog was released. In 2000,
corrections and a module extension were published. SWI-Prolog
now mostly follows the ISO standard.

In 1996, work began on a free ISO Prolog implementation under
the auspices of the GNU Project: gprolog.

Proprietary varieties of Prolog also exist. The most successful is
Visual Prolog. Unlike most versions of Prolog, Visual Prolog has
static typing and support for object-oriented programming.

2025-04-09 CS 331 Spring 2025 13

Introduction to Prolog
Characteristics — General

Prolog is a logic programming language.

Prolog execution is driven by a query, which establishes a goal.

The primary execution strategy involves unification.

Prolog attempts to unify using backtracking search.

Prolog has some support for reflection—which we will not look at
closely.

From here on, “Prolog” means Prolog as implemented in
SWI-Prolog.

2025-04-09 CS 331 Spring 2025 14

Introduction to Prolog
Characteristics — Functions & Predicates

Prolog does not really use functions, as we generally think of
them—except that there are the usual numeric functions
involving arithmetic, exponentiation, and trigonometry.

Rather, Prolog has predicates. We have defined a predicate to be
a function that returns true or false. But a Prolog predicate is
slightly different: it is something that we might prove to be true.

In the earlier facts-rules-queries example, we might use predicates
is_a_child_of and is_a_grandchild_of.

We can simulate functions with Prolog predicates.

Say we have a two-argument predicate isSquared, where
isSquared(3, 9) is true, while isSquared(3, 5) is not. To find
the square of 37, use a query: which values of X make
isSquared(37, X) true?

2025-04-09 CS 331 Spring 2025 15

Introduction to Prolog
Characteristics — Syntax

Like C, C++, Java, Lua, and Scheme—but not Haskell or Python—
Prolog syntax is free-form: indentation is not significant, and
newlines are mostly treated like blanks—with some exceptions.

Prolog uses rather unusual punctuation. Here is a Prolog rule.

foo7(Ax, BB) :- Ax = 12, BB >= Ax.

2025-04-09 CS 331 Spring 2025

Next, we continue looking
at Prolog syntax in the

context of its type system.

We know this is a rule
because it contains “:-”.

16

Introduction to Prolog
Characteristics — Type System: Overview

Prolog’s type system is similar to that of Lua: dynamic, implicit,
duck typing, new types cannot be created.

But Prolog does not have a clear, standardized notion of what
exactly a type is. Type-like properties are checked in different
ways in different contexts.

The basic kind of entity in Prolog is the term. Our rule again:

foo7(Ax, BB) :- Ax = 12, BB >= Ax.

foo7, Ax, and BB are terms. So are = and 12. And so are
“foo7(Ax, BB)”, “Ax = 12” and “BB >= Ax”.

Terms can be divided into 4 categories (call these “types”, if you
like): number, atom, variable, compound term.

2025-04-09 CS 331 Spring 2025 17

Introduction to Prolog
Characteristics — Type System: Number

foo7(Ax, BB) :- Ax = 12, BB >= Ax.

A number is what you expect. There are two varieties, which we
might call subtypes: integer and float. The kinds of values
these can hold are also what you would expect.

Integer literals are as usual: 724

Float literals are mostly as usual: 325.0 12.34e+07

But “325.” is not a float; it is an integer literal followed by a dot.

2025-04-09 CS 331 Spring 2025 18

Introduction to Prolog
Characteristics — Type System: Atom

foo7(Ax, BB) :- Ax = 12, BB >= Ax.

An atom is a name. Atoms are written in one of three ways.

▪ A sequence of letters, digits, and/or underscores, beginning with a
lower-case letter. Example: foo7

▪ A sequence of one or more of the following 17 special characters:
#$&*+-./:<=>?@\^~ Examples: = >= @:^$

▪ An arbitrary sequence of characters enclosed in single quotes. The
usual backslash escapes work. Example: 'hello there!\n’

If an atom of the 1st or 2nd kind has no backslash, then single-
quoting it gives an alternate name: foo7, 'foo7' are the same.

Atoms play several roles in Prolog.

▪ They are the names of predicates and operators (foo7 = >=).

▪ They function as string literals ('yo!').

▪ An atom can also simply be itself (ernest).

2025-04-09 CS 331 Spring 2025 19

Introduction to Prolog
Characteristics — Type System: Variable

foo7(Ax, BB) :- Ax = 12, BB >= Ax.

A variable is a placeholder than can be bound to a value (term). It
is written as a sequence of letters, digits, and/or underscores,
beginning with an upper-case letter or underscore. Examples:
Ax BB _xyz_3

Recall that, when we bind a variable to a value, it becomes a
bound variable. Other variables are free.

In Prolog, the distinction between free and bound variables is
important. A bound variable is treated like a fixed value. When a
variable is passed to a predicate, the predicate can check
whether it is free and alter its behavior based on this.

When Prolog tries to unify two terms, it does a backtracking
search. When it backtracks, it can undo the binding of a bound
variable, making the variable free again.

2025-04-09 CS 331 Spring 2025 20

Introduction to Prolog
Characteristics — Type System: Compound Term

foo7(Ax, BB) :- Ax = 12, BB >= Ax.

A compound term is, roughly, something that looks like a
function call or nontrivial expression. Above, “foo7(Ax, BB)”,
“Ax = 12”, and “BB >= Ax” are all compound terms. The infix-
operator syntax is actually optional; we can rewrite the latter
two as “=(Ax, 12)” and “>=(BB, Ax)”.

More formally, a compound term is a functor (typically a
predicate) along with its arguments. Above, foo7 is a functor (it
is a predicate); its arguments are Ax and BB.

Lists, like [1,2,3], are actually compound terms. We can write
them using the functor '[|]', which does the cons operation.
In the function-call-like syntax, the list [1,2,3] would be
written as follows: '[|]'(1,'[|]'(2,'[|]'(3,[])))

2025-04-09 CS 331 Spring 2025 21

Introduction to Prolog
Characteristics — Logical Statements [1/2]

Prolog programs consist of facts and rules.

A Prolog fact says that something is true. Here is a fact:

abc(ZZ, 24).

Anything that can be unified with the above is considered proven.

2025-04-09 CS 331 Spring 2025 22

Introduction to Prolog
Characteristics — Logical Statements [2/2]

A Prolog rule says that something is true if other things can be
proven. Here again is our rule:

foo7(Ax, BB) :- Ax = 12, BB >= Ax.

The conclusion of a rule comes first. Roughly, the above says that
foo7(Ax, BB) is true if each of Ax = 12 and BB >= Ax is true.

Prolog can use the above rule to attempt to prove anything can be
unified with foo7(Ax, BB). After unification—so variables might
be bound now—if each of the terms on the right can be proven,
in order, then whatever was unified with foo7(Ax, BB) is
considered proven.

2025-04-09 CS 331 Spring 2025 23

Introduction to Prolog
Build & Execution

SWI-Prolog prefers Prolog source filenames to use the “.pl” suffix.
We will use it—even though it more commonly marks Perl files.

Prolog can be compiled to an executable, but interactive use is
common. We will do the latter exclusively:

▪ Facts and rules will usually be placed in a source file.

▪ Queries will be entered interactively.

In the SWI-Prolog interactive environment, load source file abc.pl
using any of the following. “?-” is the prompt. Single quotes are
required if special characters other than underscore are used.

?- [abc].

?- ['abc'].

?- ['abc.pl'].

2025-04-09 CS 331 Spring 2025 24

Introduction to Prolog
Some Programming [1/2]

TO DO

▪ Try out interactive Prolog using SWI-Prolog.

▪ Write a hello-world program in Prolog and execute it.

2025-04-09 CS 331 Spring 2025

Done. See hello.pl.

25

Introduction to Prolog
Some Programming [2/2]

I have written a Prolog program that computes and prints
Fibonacci numbers: fibo.pl.

TO DO

▪ Run fibo.pl.

2025-04-09 CS 331 Spring 2025

See fibo.pl.

26

	Slide 1: PL Category: Logic PLs Introduction to Prolog
	Slide 2: Unit Overview The Prolog Programming Language
	Slide 3
	Slide 4: Review PL Feature: Execution Model
	Slide 5
	Slide 6: PL Category: Logic PLs Background [1/4]
	Slide 7: PL Category: Logic PLs Background [2/4]
	Slide 8: PL Category: Logic PLs Background [3/4]
	Slide 9: PL Category: Logic PLs Background [4/4]
	Slide 10: PL Category: Logic PLs Typical Characteristics
	Slide 11
	Slide 12: Introduction to Prolog History [1/2]
	Slide 13: Introduction to Prolog History [2/2]
	Slide 14: Introduction to Prolog Characteristics — General
	Slide 15: Introduction to Prolog Characteristics — Functions & Predicates
	Slide 16: Introduction to Prolog Characteristics — Syntax
	Slide 17: Introduction to Prolog Characteristics — Type System: Overview
	Slide 18: Introduction to Prolog Characteristics — Type System: Number
	Slide 19: Introduction to Prolog Characteristics — Type System: Atom
	Slide 20: Introduction to Prolog Characteristics — Type System: Variable
	Slide 21: Introduction to Prolog Characteristics — Type System: Compound Term
	Slide 22: Introduction to Prolog Characteristics — Logical Statements [1/2]
	Slide 23: Introduction to Prolog Characteristics — Logical Statements [2/2]
	Slide 24: Introduction to Prolog Build & Execution
	Slide 25: Introduction to Prolog Some Programming [1/2]
	Slide 26: Introduction to Prolog Some Programming [2/2]

