
Thoughts on Assignment 6
PL Feature: Execution Model

CS 331 Programming Languages

Lecture Slides

Monday, April 7, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-04-07 CS 331 Spring 2025

Unit Overview
Semantics & Interpretation

Topics

▪ Introduction to semantics

▪ Specifying semantics

▪ How interpreters work

▪ Writing an interpreter

However, we will continue
writing code for an interpreter
in Thoughts on Assignment 6.

2

Review

2025-04-07 CS 331 Spring 2025 3

Review
How Interpreters Work

An interpreter takes code in its source PL and executes it.

There are four main strategies for designing an interpreter. I list
them from worst to best performance.

▪ Do little or no processing of the source code. Execute it line by line,
using a text-based interpreter. Rare today, except for shells.

▪ Parse the source code to get an AST. Execute the AST directly,
using a tree-walk interpreter. Rare today.

▪ Compile to a byte code. Execute the byte code directly, instruction
by instruction, using a virtual machine (VM). Very common today.

▪ Compile to a byte code. Execute the byte code using a JIT, which
compiles the byte code to machine language as it executes.
Somewhat common today, and getting more common.

2025-04-07 CS 331 Spring 2025

Source

Language
Interpreter

Ours

4

Review
Writing an Interpreter

We wrote an arithmetic-expression evaluator in the form of a tree-
walk interpreter that handles the ASTs produced by
rdparser3.lua.

To evaluate, check to see what kind of node the root is. Make
function calls (recursive calls?) on each child, as appropriate.

2025-04-07 CS 331 Spring 2025

See evaluator.lua.

See calculator.lua for an

appropriate main program.

5

Thoughts on Assignment 6

2025-04-07 CS 331 Spring 2025 6

Thoughts on Assignment 6
Introduction

Assignments 3 & 4 involved writing a lexer and parser for the
Fulmar programming language. Assignment 6 completes the
trilogy with a tree-walk interpreter that takes an AST in the
format returned by the parser from Assignment 4.

As with the previous two parts, this will be written in Lua: a
module interpit, which exports a function interpit.interp.

A specification of the semantics of Fulmar and requirements on
your implementation are in the Assignment 6 description. These
slides contain some relevant ideas & examples.

2025-04-07 CS 331 Spring 2025 7

Thoughts on Assignment 6
The Goal

Here once again is a sample Fulmar program.

fibo (param in variable n)

Return Fibonacci number F(n).

func fibo()

 currfib = 0

 nextfib = 1

 i = 0 # Loop counter

 while i < n

 tmp = currfib + nextfib

 currfib = nextfib

 nextfib = tmp

 i = i+1

 end

 return currfib

end

2025-04-07 CS 331 Spring 2025

Main program

Print some Fibonacci numbers

how_many_to_print = 20

println("Fibonacci Numbers")

j = 0 # Loop counter

while j < how_many_to_print

 n = j # Set param for fibo

 ff = fibo()

 println("F(", j, ") = ", ff)

 j = j+1

end

8

Thoughts on Assignment 6
Function interpit.interp [1/2]

interpit.interp takes three parameters:

ast

 The AST to interpret, in the format returned by parseit.parse.

state

 Table holding the current state: values of functions, simple
variables, and arrays. This is passed so that Fulmar code can be
entered interactively, line by line, and handled as a series of
separate programs, each getting its state from the earlier code.

util

 Table with three function members, to be called when doing
numeric input, string output, and random number generation.

interpit.interp will return the new state.

2025-04-07 CS 331 Spring 2025 9

Thoughts on Assignment 6
Function interpit.interp [2/2]

You will need to write a number of helper functions. I suggest that,
at the very least, you write the following four:

▪ A function that takes the AST for a program and executes it,
updating the state appropriately.

▪ A function that takes the AST for a statement and executes it,
updating the state appropriately.

▪ A function that takes the AST for an argument in a print/println
statement, evaluates it, and returns its value (as a Lua string).

▪ A function that takes the AST for a numeric expression, evaluates it,
and returns its value (as a Lua number).

These will mostly be recursive—perhaps indirectly. For example,
the function that executes a program will be called to execute
an entire program, or the body of a function, or the body of an
if-statement or while-loop.

2025-04-07 CS 331 Spring 2025 10

Thoughts on Assignment 6
State

State will be stored as a Lua table with three members: f, v, and
a, holding functions, simple variables, and arrays, respectively:

▪ The AST for function abc will be in state.f["abc"].

▪ The value of simple variable abc will be in state.v["abc"].

▪ The value of array item abc[2] will be in state.a["abc"][2].

All Fulmar identifiers are global and have dynamic scope. Once a
variable/function is given a value, it has that value everywhere
in the code. Therefore, only one state table is needed.

Fulmar has no fatal runtime errors. Undefined variables are treated
as if they have a default value.

▪ The default AST for a function is { PROGRAM }.

▪ The default value for a simple variable or array item is 0 (zero).

2025-04-07 CS 331 Spring 2025 11

Thoughts on Assignment 6
Utilities [1/2]

I provide a runtime system for Fulmar, including the following.

numToStr

 Number → string. Use in numeric output.

strToNum

 String → number. Use in numeric input.

numToInt

 Number → integer. Call this after every numeric computation.

boolToInt

 Lua boolean → integer.

astToStr

Return a printable form of a given AST. For debugging only.

And all of Lua is available to be used.

2025-04-07 CS 331 Spring 2025 12

Thoughts on Assignment 6
Utilities [2/2]

In addition, table util, which is passed to interpit.interp, has
three members, all of which are functions.

util.input

 Returns a string holding a line of input, without the ending
newline. This must be used for all input (readnum calls).

util.output

 Takes a string to output. This must be used for all output
(print/println calls).

util.random

 Takes an integer n. If n >= 2, returns a pseudorandom integer
from 0 to n–1, inclusive. Otherwise, returns zero. This must be
used to obtain the return value of each rnd call. The passed
integer is the value of the argument to rnd.

2025-04-07 CS 331 Spring 2025 13

Thoughts on Assignment 6
Numeric & Boolean Values

Fulmar has no separate Boolean type. When a Fulmar number is
treated as a Boolean, it is true if it is nonzero (… ~= 0) and
false otherwise.

For most Fulmar operators, the computation is that done by the
Lua operator with the same name, followed by a call to
numToInt or boolToInt, as appropriate. Some exceptions:

▪ If the second operand of “/” or “%” is zero, then the result is zero.

▪ The Fulmar “&&”, “||”, and “!=” operators correspond to the Lua
“and”, “or”, and “~=” operators, respectively.

▪ Unlike Fulmar, Lua has no unary “+” operator. The Fulmar unary “+”
operator simply returns its operand unchanged.

▪ When the Fulmar bracket operator is used, the expression between
brackets is evaluated; its value is used as a key for the appropriate
member of state.a.

2025-04-07 CS 331 Spring 2025 14

Thoughts on Assignment 6
Function Calls

A Fulmar function may be called as a function-call statement, or in
an expression. When a function is called, its AST is executed in
the same way the AST for a program is executed.

As a statement, a function call has no value.

As an expression, the value of a function call is the value of the
simple variable return after the function body is executed. This
variable is stored just like any other simple variable. But it is
only used for return values of functions. Since “return” is a
reserved word, we cannot say “return = …”.

2025-04-07 CS 331 Spring 2025 15

Thoughts on Assignment 6
Handling Variables & Functions [1/3]

Saving a newly defined function is easy:

state.f[funcname] = ast

Similarly, setting the value of a simple variable is easy:

state.v[varname] = value

2025-04-07 CS 331 Spring 2025 16

Thoughts on Assignment 6
Handling Variables & Functions [2/3]

Setting the value of an array item is a little trickier, since the array
may not exist.

First, check if the array exists:

if state.a[arrayname] == nil then

 …

If the array does not exist, then create an empty array:

state.a[arrayname] = {}

In either case, the array item can now be set:

state.a[arrayname][index] = value

2025-04-07 CS 331 Spring 2025 17

Thoughts on Assignment 6
Handling Variables & Functions [3/3]

When getting a simple variable, array item, or function, always
check for nonexistence.

If a simple variable or array item does not exist, then its value is
considered to be 0 (zero). If a function does not exist, then its
AST is considered to be { PROGRAM }

When getting an array item, first check whether the array exists. If
not, then all array items have the value 0 (zero).

If the array does exist, then check whether the array item exists.
Again, if not, then its value is considered to be 0 (zero).

2025-04-07 CS 331 Spring 2025 18

Thoughts on Assignment 6
How I Did It [1/2]

Here is how I wrote the interpreter. As usual, you are not required
to do things exactly the same way I did. However, my way does
have the advantage that it is known to work.

My four main helper functions, mentioned a few slides back, are
named as follows. Each takes an AST.

▪ interp_program

▪ interp_stmt

▪ eval_print_arg (returns string)

▪ eval_expr (returns number)

For the sake of modularity, it would a good idea to break some of
these into multiple smaller functions.

2025-04-07 CS 331 Spring 2025 19

Thoughts on Assignment 6
How I Did It [2/2]

Writing eval_expr

▪ This function takes an AST and returns the value of the expression.

▪ It is called for the right-hand side of an assignment statement, a
print/println argument that is an expression, a condition after
if, elseif, or while, an array index, and the argument to a chr or
rnd call.

▪ It can call itself recursively, for arguments of operators.

▪ I wrote it in the form of a number of cases:

▪ ast[1] == NUMLIT_VAL

▪ ast[1] == READNUM_CALL

▪ ast[1] == RND_CALL

▪ ast[1] == FUNC_CALL

▪ ast[1] == SIMPLE_VAR

▪ ast[1] == ARRAY_VAR

▪ type(ast[1]) == "table", and:

▪ ast[1][1] == BIN_OP

▪ ast[1][1] == UN_OP

2025-04-07 CS 331 Spring 2025 20

Thoughts on Assignment 6
General

Be DRY! If you have written a function, then you can use it.

You may assume the AST you are given is formatted correctly.

Write all functions local to interpit.interp.

▪ You do not need to pass around state, util. Do pass the AST.

▪ As in parseit, you will need to forward declare the local functions:

local ff

function ff(…)

 …

2025-04-07 CS 331 Spring 2025 21

Thoughts on Assignment 6
CODE

TO DO

▪ Begin writing function interpit.interp.

2025-04-07 CS 331 Spring 2025

Partially done. See interpit.lua.

I do not plan to make any further

changes to this file.

22

2025-04-07 CS 331 Spring 2025

Unit Overview
The Prolog Programming Language

Our seventh unit: The Prolog Programming Language.

Topics

▪ PL feature: execution model

▪ PL category: logic PLs

▪ Introduction to Prolog

▪ Prolog: simple programming

▪ Prolog: lists

▪ Prolog: flow of control

▪ Prolog: interaction

After this will be Student Presentations on Programming
Languages.

23

PL Feature: Execution Model

2025-04-07 CS 331 Spring 2025 24

PL Feature: Execution Model
Introduction, Commands, Evaluation

There is always something that drives
the execution of a program.

▪ There is some task the computer is
attempting to perform.

▪ There is some strategy for carrying out the execution.

In “C”, the task is completing a call to function main. The strategy
is to carry out the commands in function main. If other functions
are called, these become subtasks.

Lua is similar, but the task is executing the code at global scope.

In Haskell, the task is evaluating some expression, perhaps
Main.main. The strategy is to evaluate the primary
function/operator in the expression, with subexpressions
becoming subtasks.

2025-04-07 CS 331 Spring 2025

These slides are an incomplete
summary of the reading
“Programming Language

Execution Models”.

25

PL Feature: Execution Model
Unification

To unify two constructions means to make them the same by
binding variables (setting their values) as necessary.

Examples (upper-case letters are variables):

▪ We can unify X and 8 by setting X to 8.

▪ 5 and 8 cannot be unified.

▪ We can unify 5 and 5 by doing nothing.

▪ We can unify X and the list [1, 5] by setting X to [1, 5].

▪ We can unify [A, 6] and [4, B] by setting A to 4, and B to 6.

2025-04-07 CS 331 Spring 2025 26

PL Feature: Execution Model
Unification in Prolog

Unification can be the basis of another execution strategy.

In the Prolog programming language (covered next), execution is
driven by the task of answering some query—a question,
roughly.

The strategy is to unify something we wish to prove true with
something known to be true. The simplest example of the latter
is a Prolog fact, which says, essentially, “Here is something
true.”

But there is more complexity to it. Details to come.

2025-04-07 CS 331 Spring 2025 27

	Slide 1: Thoughts on Assignment 6 PL Feature: Execution Model
	Slide 2: Unit Overview Semantics & Interpretation
	Slide 3
	Slide 4: Review How Interpreters Work
	Slide 5: Review Writing an Interpreter
	Slide 6
	Slide 7: Thoughts on Assignment 6 Introduction
	Slide 8: Thoughts on Assignment 6 The Goal
	Slide 9: Thoughts on Assignment 6 Function interpit.interp [1/2]
	Slide 10: Thoughts on Assignment 6 Function interpit.interp [2/2]
	Slide 11: Thoughts on Assignment 6 State
	Slide 12: Thoughts on Assignment 6 Utilities [1/2]
	Slide 13: Thoughts on Assignment 6 Utilities [2/2]
	Slide 14: Thoughts on Assignment 6 Numeric & Boolean Values
	Slide 15: Thoughts on Assignment 6 Function Calls
	Slide 16: Thoughts on Assignment 6 Handling Variables & Functions [1/3]
	Slide 17: Thoughts on Assignment 6 Handling Variables & Functions [2/3]
	Slide 18: Thoughts on Assignment 6 Handling Variables & Functions [3/3]
	Slide 19: Thoughts on Assignment 6 How I Did It [1/2]
	Slide 20: Thoughts on Assignment 6 How I Did It [2/2]
	Slide 21: Thoughts on Assignment 6 General
	Slide 22: Thoughts on Assignment 6 CODE
	Slide 23: Unit Overview The Prolog Programming Language
	Slide 24
	Slide 25: PL Feature: Execution Model Introduction, Commands, Evaluation
	Slide 26: PL Feature: Execution Model Unification
	Slide 27: PL Feature: Execution Model Unification in Prolog

