
Writing an Interpreter

CS 331 Programming Languages

Lecture Slides

Friday, April 4, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-04-04 CS 331 Spring 2025

Unit Overview
Semantics & Interpretation

Topics

▪ Introduction to semantics

▪ Specifying semantics

▪ How interpreters work

▪ Writing an interpreter

2

Review

2025-04-04 CS 331 Spring 2025 3

Review
How Interpreters Work [1/2]

An interpreter takes code in its source PL and executes it.

There are four main strategies for designing an interpreter. I list
them from worst to best performance.

▪ Do little or no processing of the source code. Execute it line by line,
using a text-based interpreter. Rare today, except for shells.

▪ Parse the source code to get an AST. Execute the AST directly,
using a tree-walk interpreter. Rare today.

▪ Compile to a byte code. Execute the byte code directly, instruction
by instruction, using a virtual machine (VM). Very common today.

▪ Compile to a byte code. Execute the byte code using a JIT, which
compiles the byte code to machine language as it executes.
Somewhat common today, and getting more common.

2025-04-04 CS 331 Spring 2025

Source

Language
Interpreter

4

Review
How Interpreters Work [2/2]

Processing an AST is typically done via mutually recursive
functions. A function is called for the root node. It makes a
function call for each of its children, and so on.
This is called walking the tree.

In a tree-walk interpreter,
these functions do the execution
without any further processing.

We know of faster methods; tree-walk interpreters are uncommon.
However, they are easy to write. An early release of a PL might
include a tree-walk interpreter, with faster interpreters written
later. The Ruby PL was handled this way, for example.

2025-04-04 CS 331 Spring 2025

*

+ b

a 2

A function is called for
the root node.

It makes a function call
for each of its children.

AST

These make calls for
their children, etc.

5

Writing an Interpreter

2025-04-04 CS 331 Spring 2025 6

Writing an Interpreter
Introduction

Now we look at how an interpreter is written.

First, we discuss issues that any interpreter will need to deal with,
and how these might be handled.

Then we look at these issues for a simple tree-walk interpreter that
evaluates arithmetic expressions. We conclude by writing such
an interpreter.

2025-04-04 CS 331 Spring 2025 7

Writing an Interpreter
General Issues — Semantics

We can write a lexer and parser for a programming language
without knowing anything about its semantics.

But to write an interpreter, we must know everything about the
semantics. We cannot write an interpreter for a PL without a
semantics specification.

2025-04-04 CS 331 Spring 2025 8

Writing an Interpreter
General Issues — Processing an AST

If the source code is parsed, then there will be an AST. We need to
know the format of this tree.

We will also need to process the AST, either by interpreting it
directly (tree-walk interpreter), or by generating code or some
other IR from it.

As we have said, rooted trees, including ASTs, are usually dealt
with as follows.

▪ Call a function to handle the root node.

▪ Make a function call (recursive call?) on each child of the root, as
appropriate.

2025-04-04 CS 331 Spring 2025

*

+ -

a 2 b

(a + 2) * -b

9

Writing an Interpreter
General Issues — State

While an interpreter is executing a program, it must store program
state: variable values, the call stack, etc.

If a PL has static typing and scope (C++, Java, Haskell), then the
compiler can determine the types and scopes of all variables. If
it is being compiled to machine language, then these can be laid
out in memory—for local values, in a stack frame. At runtime, a
reference to a value is a reference to its memory location. The
system stack can be used for the call stack.

In a dynamic PL (Lua, Python, etc.), it is common to place
variables in an associative structure—typically a hash table—
with the variable name as key. There will usually be a separate
hash table for each namespace or scope.

2025-04-04 CS 331 Spring 2025 10

Writing an Interpreter
General Issues — Support Code

There will usually need to be code to support the interpretation.
For an executing program, this is a runtime system (often
simply runtime): additional code that programs will use while
running.

Some things that a runtime system might include:

▪ Program startup/initialization and shutdown.

▪ Memory management.

▪ Low-level I/O.

▪ Interfaces to other operating system functionality: threads,
interprocess communication, etc.

▪ Support for error handling.

▪ Implementations of PL commands that perform complex operations:
advanced floating-point computations, operations involving multiple
data items like sorting or matrix operations, etc.

2025-04-04 CS 331 Spring 2025 11

Writing an Interpreter
Arithmetic-Expression Evaluator — Overview

Let’s write an evaluator for simple arithmetic expressions in Lua,
as a tree-walk interpreter that takes an AST.

We use the arithmetic-expression syntax parsed
by the last Recursive-Descent parser written
in class: lexer.lua + rdparser3.lua.

We will need to deal with all the issues we have mentioned:

▪ Semantics. What is the semantics of our arithmetic expressions?

▪ Processing an AST. What format will our ASTs be stored in? How
will our tree-walk interpreter evaluate an arithmetic expression,
according to its semantics, based on an AST?

▪ State. Our expressions can involve named variables. How will we
represent and access their values?

▪ Support Code. What support code (runtime system?) is needed?

2025-04-04 CS 331 Spring 2025

*

+ -

a 2 b

12

Writing an Interpreter
Arithmetic-Expression Evaluator — Semantics [1/4]

We will specify the semantics of our expressions informally.

As we did some weeks ago, in Regular Languages & Regular
Expressions, we can specify the semantics of arithmetic
expressions by describing the semantics of the pieces (numeric
literals, simple variables) and then the semantics of ways to
build expressions out of smaller ones (operators).

However, we will need to specify details. For example, previously,
we said, “The value of a numeric literal is its numeric value.” But
how will we represent this? What values are legal?

Since we are writing our expression evaluator in Lua, we can
handle many of these issues easily, simply by saying that some
particular Lua functionality will be used.

2025-04-04 CS 331 Spring 2025 13

Writing an Interpreter
Arithmetic-Expression Evaluator — Semantics [2/4]

Expression Semantics

▪ The value of an expression is a Lua number. All number values are
legal.

▪ The value of a numeric literal is the result when the string is passed
to the Lua built-in function tonumber. (The format for numeric
literals used by lexer.lua works with tonumber.)

▪ The value of a simple variable is found by looking it up. (More on
this shortly.)

▪ There are four operators (+, -, *, /). All are binary. The result of
each of these is the result when the corresponding Lua binary
operator is applied to the values obtained by evaluating each of the

two operands.

(Cont’d)

2025-04-04 CS 331 Spring 2025 14

Writing an Interpreter
Arithmetic-Expression Evaluator — Semantics [3/4]

Expression Semantics (cont’d)

Do not forget edge cases!

▪ Dividing by zero gives whatever value the
Lua operation returns.

▪ Other numeric-computation edge cases
(overflow, underflow) are handled similarly: the result is the value
of the Lua operation.

▪ When an undefined variable is used, it is treated as if it has value
zero.

2025-04-04 CS 331 Spring 2025

Lua follows the IEEE floating-
point standard, which

specifies +infinity, –infinity,
and NaN (Not a Number)

values for operations without
numeric values. These do not

crash or raise exceptions.

15

Writing an Interpreter
Arithmetic-Expression Evaluator — Semantics [4/4]

Our expression semantics has two important consequences.

First, there are no fatal runtime errors. Every expression that
parses correctly has a value that can be computed and
displayed. The evaluation function requires no error-handling
code. Similarly, its caller will not need to check for errors, once
parsing is successful.

Second, the semantics of our arithmetic expressions is entirely
about what their value is. We do not need to worry about
declaring new variables or setting/changing their values.

2025-04-04 CS 331 Spring 2025 16

Writing an Interpreter
Arithmetic-Expression Evaluator — Processing an AST [1/3]

It will be convenient to use the AST format from rdparser3.lua.
We can then use rdparser3.lua as a source of ASTs.

In these ASTs, each node represents one of three things: a
numeric literal, a simple variable, or a binary operator.

2025-04-04 CS 331 Spring 2025

binOp: *

binOp: + simpleVar: b

simpleVar: a numLit: 2

(a + 2) * b

{ { BIN_OP, "*" },

 { { BIN_OP, "+" },

 { SIMPLE_VAR, "a" },

 { NUMLIT_VAL, "2" } },

 { SIMPLE_VAR, "b" } }

=

17

Writing an Interpreter
Arithmetic-Expression Evaluator — Processing an AST [2/3]

An AST is a Lua array.

▪ Numeric literal. 2-item array: { NUMLIT_VAL, STR }
STR is a string holding the literal.

▪ Simple variable. 2-item array: { SIMPLE_VAR, STR }
STR is a string holding the variable name.

▪ Other. 3-item array: { { BIN_OP, STR }, OPER1, OPER2 }
STR is a string holding the operator.

OPER1 and OPER2 are the ASTs of the two operands.

BIN_OP, NUMLIT_VAL, SIMPLE_VAR are 1, 2, 3, respectively.

2025-04-04 CS 331 Spring 2025

binOp: *

binOp: + simpleVar: b

simpleVar: a numLit: 2

{ { BIN_OP, "*" },

 { { BIN_OP, "+" },

 { SIMPLE_VAR, "a" },

 { NUMLIT_VAL, "2" } },

 { SIMPLE_VAR, "b" } }

=

18

Writing an Interpreter
Arithmetic-Expression Evaluator — Processing an AST [3/3]

To process an AST, we can write a function that takes the AST for
an expression and returns its numeric value. To
evaluate subexpressions, the function can call
itself recursively.

Based on our arithmetic-expression semantics,
the evaluation function can work like this.

▪ If the root node represents a numeric literal:

▪ Convert the literal to a number and return it.

▪ Else if the root node represents a numeric variable:

▪ Get the variable’s value and return it.

▪ Else (the root node represents a binary operator):

▪ Compute the value of the left subtree—recursive call.

▪ Compute the value of the right subtree—recursive call.

▪ Apply the appropriate operation and return the result.

2025-04-04 CS 331 Spring 2025

*

+ -

a 2 b

More steps would be needed if our expressions
involved function calls or operators of other arities.

19

Writing an Interpreter
Arithmetic-Expression Evaluator — State

None of our operations have side effects. So we do not need to
maintain any mutable (changeable) state. However, values of
variables do need to be stored.

Since we are writing Lua, we will not lay anything out in memory.
We store values of variables as Lua number values in a Lua
table with the variable name (Lua string) as the key.

There is only one namespace/scope. Just one Lua table is needed.

vars = {

 ["pi"] = 3.14159265358979323846,

 ["answer"] = 42,

 …

 }

2025-04-04 CS 331 Spring 2025 20

Writing an Interpreter
Arithmetic-Expression Evaluator — Support Code

What code is needed to support our interpreter?

The interpreter will need to:

▪ Read an AST.

▪ Convert a numeric literal (string) to its numeric value.

▪ Look up a variable value in a table.

▪ Perform arithmetic operations (add, subtract, multiply, divide).

Facilities to do each of these are built into Lua. So we do not need
to write code to implement details of our operations; we simply
use the existing Lua functionality.

However, it would be nice to have a calculator program that inputs
an expression from the user, parses it, calls our interpreter to
compute its value, and outputs the result—or an error message.

This program can also set the values of a few variables.

2025-04-04 CS 331 Spring 2025 21

Writing an Interpreter
Arithmetic-Expression Evaluator — CODE

Putting it all together, we can write an arithmetic-expression
evaluator in the form of a tree-walk interpreter that handles the
ASTs produced by rdparser3.lua.

We will write a function eval exported by a module evaluator,
stored in the file evaluator.lua. This function will take an AST
and a table holding values of variables.

TO DO

▪ Write an arithmetic-expression evaluator as described. Be sure to
understand the AST format thoroughly before doing any coding.

2025-04-04 CS 331 Spring 2025

Done. See evaluator.lua.

See calculator.lua for an

appropriate main program.

22

Writing an Interpreter
Final Note

Looking at function evaluator.eval, if we count the lines that
actually do something (so do not count blank lines, comments,
assert calls, and “end”), we end up with a bit more than 20.

That is not very much!

Q. Why can it be so short?

A. Because a lot of the work is already done, in the lexing and
parsing phases. (Counting lines in the same way, the parser is
over 80 lines, while the lexer is well over 200 lines.)

Conclusion. Lexing and parsing are worthwhile things to do. An
AST is a convenient, useful representation.

2025-04-04 CS 331 Spring 2025 23

	Slide 1: Writing an Interpreter
	Slide 2: Unit Overview Semantics & Interpretation
	Slide 3
	Slide 4: Review How Interpreters Work [1/2]
	Slide 5: Review How Interpreters Work [2/2]
	Slide 6
	Slide 7: Writing an Interpreter Introduction
	Slide 8: Writing an Interpreter General Issues — Semantics
	Slide 9: Writing an Interpreter General Issues — Processing an AST
	Slide 10: Writing an Interpreter General Issues — State
	Slide 11: Writing an Interpreter General Issues — Support Code
	Slide 12: Writing an Interpreter Arithmetic-Expression Evaluator — Overview
	Slide 13: Writing an Interpreter Arithmetic-Expression Evaluator — Semantics [1/4]
	Slide 14: Writing an Interpreter Arithmetic-Expression Evaluator — Semantics [2/4]
	Slide 15: Writing an Interpreter Arithmetic-Expression Evaluator — Semantics [3/4]
	Slide 16: Writing an Interpreter Arithmetic-Expression Evaluator — Semantics [4/4]
	Slide 17: Writing an Interpreter Arithmetic-Expression Evaluator — Processing an AST [1/3]
	Slide 18: Writing an Interpreter Arithmetic-Expression Evaluator — Processing an AST [2/3]
	Slide 19: Writing an Interpreter Arithmetic-Expression Evaluator — Processing an AST [3/3]
	Slide 20: Writing an Interpreter Arithmetic-Expression Evaluator — State
	Slide 21: Writing an Interpreter Arithmetic-Expression Evaluator — Support Code
	Slide 22: Writing an Interpreter Arithmetic-Expression Evaluator — CODE
	Slide 23: Writing an Interpreter Final Note

