
Specifying Semantics
How Interpreters Work

CS 331 Programming Languages

Lecture Slides

Wednesday, April 2, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-04-02 CS 331 Spring 2025

Unit Overview
The Scheme Programming Language

Topics

▪ PL feature: identifiers & values

▪ PL feature: reflection

▪ PL category: Lisp-family PLs

▪ Introduction to Scheme

▪ Scheme: basics

▪ Scheme: evaluation

▪ Scheme: data

▪ Scheme: macros

















2

2025-04-02 CS 331 Spring 2025

Unit Overview
Semantics & Interpretation

Topics

▪ Introduction to semantics

▪ Specifying semantics

▪ How interpreters work

▪ Writing an interpreter



3

Review

2025-04-02 CS 331 Spring 2025 4

2025-04-02 CS 331 Spring 2025

Review
Introduction to Semantics

Syntax is the correct structure of code.

Semantics is the meaning of code.

Some things the semantics of a PL might address:

Runtime behavior of code “a + b” computes the sum of the

values of a, b and returns the result.

Static typing “int n;” declares a variable named n

of type int.

Data structure organization “class Zz { int _a, _b; };”

declares a class named Zz with two

private data members: _a, _b.

Correctness of cases “switch (n) { case 1: case 1:

a=0; }” is an illegal switch-statement,

because it contains duplicate cases.

Dynamic
Semantics

Static
Semantics

(in some PLs)

5

Specifying Semantics

2025-04-02 CS 331 Spring 2025 6

2025-04-02 CS 331 Spring 2025

Specifying Semantics
Introduction [1/3]

From the first day of class.

Consider. Alice invents a PL and writes a precise description of it—a
specification. Now Bob and Carol want to write compilers for
this PL.

With a properly written specification, Bob will be able to write a
compiler without talking to Alice. Carol will be able to write a
compiler without talking to Alice or Bob. The two compilers will
compile the same programs. The executables produced by these
compilers will do the same things.

How does Alice write a specification? How do Bob and Carol use it?

We have answered these questions as they relate to specifying the
syntax of a PL. Now, what about the semantics of a PL?

7

Specifying Semantics
Introduction [2/3]

A formal specification method is a mathematically based
technique for describing something. Formal specifications use
precisely defined notation. Other methods are informal.

For example, we can formally specify a language using a regular
expression: /xy*/

Or we can informally specify it by describing it in words: strings
that consist of an x character followed by zero or more y
characters.

We have looked at formal methods for specifying the syntax of a
PL—in particular, phrase-structure grammars.

Formal semantics refers to formal specification methods for
semantics.

2025-04-02 CS 331 Spring 2025 8

Specifying Semantics
Introduction [3/3]

We look very briefly at two formal-semantics specification
methods. We will not cover notation.

▪ Operational semantics. Specify semantics of a PL in terms of the
semantics of some other PL or abstract machine (usually the latter).

▪ Denotational semantics. Specify semantics by representing state
& values with mathematical objects, commands & computations by
functions.

2025-04-02 CS 331 Spring 2025 9

Specifying Semantics
Operational Semantics

Operational semantics is the name given to a number of
methods for specifying semantics. These focus on the actions or
computations that various pieces of code perform.

There are a number of different kinds of operational semantics.
What they have in common is that the actions/computations of
code are expressed in terms of some other system whose
semantics is already known. This system might be:

▪ A mathematical system.

▪ An abstract machine—perhaps some kinds of automaton.

▪ Some other programming language.

For operational semantics to be worth using, this other system
must be precisely specified, and also simpler than the PL whose
semantics is being described.

2025-04-02 CS 331 Spring 2025 10

Specifying Semantics
Denotational Semantics [1/2]

Denotational semantics is another method for specifying
semantics. It involves the construction of mathematical objects
called denotations, which describe the meanings of program
entities. The denotation of an entity is described in terms of the
denotations of the entities it is composed of.

Here is a ridiculously simple example.

Consider the following grammar.

digit → '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

number → digit

number → number digit

2025-04-02 CS 331 Spring 2025 11

Specifying Semantics
Denotational Semantics [2/2]

digit → '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

number → digit

number → number digit

We describe a function m that, given a program entity, returns its
denotation. In this case, the denotation will be an integer.

▪ In the first production, for a digit d, m(d) is the usual numeric
value. So m('0') = 0, m('1') = 1, etc.

▪ In the second production, if a number n is the digit d, then m(n) =
m(d).

▪ In the third production, if a number n expands to a number n0

followed by a digit d, then m(n) = 10×m(n0) + m(d).

2025-04-02 CS 331 Spring 2025 12

Specifying Semantics
PL Semantics Specification [1/3]

Formal methods for specifying syntax have been very successful.
Since the late 1970s, virtually all PLs have had a syntax
specification in terms of some kinds of grammar.

However, formal semantics has been much less successful.

In practice, the semantics of a PL is usually specified in one of two
ways.

▪ Part formally, part informally. Perhaps the semantics of the core
constructions of the PL is described informally, while higher level
constructions are described using formal semantics, in terms of the
core. Example: Haskell.

▪ Entirely informally, with no formal semantics at all. The
meaning/effect of the various constructions is explained. Example:
C++.

There are PLs with a complete formal-semantics specification. But
this is relatively rare.

2025-04-02 CS 331 Spring 2025 13

Specifying Semantics
PL Semantics Specification [2/3]

In some PLs, it is possible for code to have no specified semantics.
Such code is said to have undefined behavior.

For example, the C++ Standard does not specify the semantics of
code that accesses an array using an out-of-range index.

Consider the following C++ code:

k = 99;

int arr[5]; // int array of size 5

arr[k] = 3; // Index out-of-range – UNDEFINED BEHAVIOR

Q. Why is no semantics specified? Hint. Not because the writers of
the Standard made a mistake.

A. To give compiler writers freedom. Code only needs to work for
an in-range index. A compiler writer does not need to worry
about what the generated code does for an out-of-range index;
no matter what it does, it will be compliant with the Standard.

2025-04-02 CS 331 Spring 2025 14

Specifying Semantics
PL Semantics Specification [3/3]

TO DO

▪ Look at the official semantics specifications of various programming
languages.

2025-04-02 CS 331 Spring 2025

Done. We looked at

semantics specifications
for C++ and Haskell.

15

How Interpreters Work

2025-04-02 CS 331 Spring 2025 16

How Interpreters Work
Refresher: Compilation & Interpretation [1/2]

Recall: a compiler takes code in one PL (the source language)
and translates it into code in another PL (the target language).

Remember that the target language is not necessarily machine
language (native code).

An interpreter takes code in some PL and executes it.

2025-04-02 CS 331 Spring 2025

Source

Language

Target

Language
Compiler

Source

Language
Interpreter

Remember:
 • A compiler translates.
 • An interpreter executes.

17

How Interpreters Work
Refresher: Compilation & Interpretation [2/2]

Compilation and interpretation are not mutually exclusive. Many
modern interpreters begin by compiling to an intermediate
representation (IR)—perhaps a byte code—which is then
interpreted directly.

An interpreter or compiler is rarely a monolithic thing. It will be
made of separate components (which are composed of
components, which are composed of components …).

2025-04-02 CS 331 Spring 2025

Lua

Byte Code

Standard Lua Interpreter
Lua

Lua Byte Code
Interpreter

Lua

Compiler

IR

18

How Interpreters Work
Kinds of Interpreters

While an interpreter may go through many initial steps (lexical
analysis, syntax analysis, byte-code generation, etc.),
eventually, the code, in whatever form it ends up in, will need to
be executed.

The code module that does the actual execution will usually lie in
one of the following four categories:

▪ Text-Based Interpreter

▪ Tree-Walk Interpreter

▪ Virtual Machine

▪ JIT

Next we look at each of these and how it works.

2025-04-02 CS 331 Spring 2025 19

How Interpreters Work
Text-Based Interpreter

A text-based interpreter is one that goes through the high-level
source code and executes it directly, line by line, with little or no
preprocessing and no intermediate representation used.

Text-based interpreters used to be common. In particular, in the
late 1970s, interpreters for the dialects of the BASIC
programming language used on early microcomputers were
mostly text-based.

However, text-based interpreters generally offer poor performance
compared to other methods, and their use has faded. Today
they may be used to execute the scripting languages associated
with some command-line shells, but not for much else.

2025-04-02 CS 331 Spring 2025 20

How Interpreters Work
Tree-Walk Interpreter

Suppose we parse our source code to obtain an AST. Processing
the AST is typically done via mutually recursive functions. A
function is called for the root node. It makes a function call for
each of its children, and so on.
This is called walking the tree.

In a tree-walk interpreter,
these functions do the execution
without any further processing.

We know of faster methods; tree-walk interpreters are uncommon.
However, they are easy to write. An early release of a PL might
include a tree-walk interpreter, with faster interpreters written
later. The Ruby PL was handled this way, for example.

2025-04-02 CS 331 Spring 2025

*

+ b

a 2

A function is called for
the root node.

It makes a function call
for each of its children.

AST

These make calls for
their children, etc.

21

How Interpreters Work
Virtual Machine [1/2]

The fastest ways to execute code involve compilation based on the
AST. In an interpreter, such a compiler will usually target a
machine-language-like programming language designed
specifically to be the target PL: a byte code.

Code that executes a very low-level PL like a machine language or
a byte code is called a virtual machine (VM). Some VMs
emulate processors and portions of computer hardware; these
execute some kind of machine language. Other VMs execute
some kind of byte code and might be used as shown above.

2025-04-02 CS 331 Spring 2025

Byte

Code

Interpreter
High-Level

Virtual

Machine
CompilerPL

22

How Interpreters Work
Virtual Machine [2/2]

A virtual machine that is used in a PL interpreter will execute the
byte code directly, instruction by instruction.

An interpreter that does compilation to a byte code followed by
execution by a VM, as shown above, appears to be the most
common kind of interpreter used today. The standard
interpreters for Lua, Python, and any number of other
programming languages use this design.

2025-04-02 CS 331 Spring 2025

Byte

Code

Interpreter
High-Level

Virtual
Machine

CompilerPL

23

How Interpreters Work
JIT [1/8]

Some very fast interpreters execute byte code using a JIT—or,
more fully, a JIT (Just-In-Time) compiler. This compiles byte
code, usually to machine language, as it executes.

This design is increasingly common. It is used, for example, by the
interpreters LuaJIT (for Lua) and PyPy (for Python).

However, while a well written JIT is fast, it can be labor-intensive
to design and code. The decision to write a JIT or something
slower depends on whether fast execution is worth the effort.

2025-04-02 CS 331 Spring 2025

Byte

Code

Interpreter
High-Level

Compiler JITPL

24

How Interpreters Work
JIT [2/8]

The JIT was invented in the late 1980s at Xerox’s Palo Alto
Research Center (PARC), for the programming language Self.

In the late 1990s, the Self JIT was the basis of an implementation
of the Java Virtual Machine (JVM) called Hotspot—which
became the default JVM implementation.

All JITs written since have been inspired (at least) by Hotspot.

JITs might seem magical. Let’s look at how they work.

2025-04-02 CS 331 Spring 2025

JVM

JIT
Byte

Code

Java
Compiler

Java
Java Byte
Code File

25

How Interpreters Work
JIT [3/8]

A JIT divides up code to be executed into sections. Ideally, sections
involve little flow of control. The JIT tracks whether each section

▪ is in byte code or has been compiled to machine language, and

▪ for the latter, how aggressively the section was optimized.

A byte-code section is executed by a
VM. A machine-language section
can be called like a function.

Between section executions, control
returns to the main JIT code. It
may compile a byte-code section
to machine language, or it may
recompile a machine language
section with more optimization,
or it may do no compilation.

2025-04-02 CS 331 Spring 2025

Main JIT Code

Virtual
Machine

Byte-Code
Section

Machine-
Language
Section

Call Return

Executes

Call Return

Typically, there are many
sections, not just two.

26

How Interpreters Work
JIT [4/8]

“Just-in-time” actually means compiling at the optimal time.

▪ Compiling early helps realize the benefits sooner.

▪ But later compilation can use information from code execution—for
example, in profile-based optimizations, based on what portions
of the code spend the most time executing.

Each code section is rated cold to hot, indicating
the priority of fast execution. A hot section is:

▪ more likely to be compiled,

▪ more likely to be aggressively optimized, and,

▪ more likely to be re-compiled with more optimization.

A section’s hot/cold rating may be affected by:

▪ How many times the section has been executed.

▪ How much time the system has spent executing the section.

▪ How much of a priority fast execution is at that point.

2025-04-02 CS 331 Spring 2025

Hot

Cold

Speed is a
high priority

Speed is a
low priority

This is how a typical
JIT works. Some JITs

may be different.

27

How Interpreters Work
JIT [5/8]

Here is an example that may help to explain performance
improvements with a JIT. Consider the following Lua function.

function ff(t)

 t.gg()

end

What does function ff actually do?

▪ First, it checks whether t is a table. If not, it raises an exception.

▪ Then it checks whether t has a gg member—or a metatable with an
__index member. If not, it raises an exception.

▪ Having found gg, it checks whether it is callable (a function or a
table with a metatable having a __call member). If not, it raises
an exception.

▪ If all is well, then it calls gg().

That’s a lot! (Issues like this are why dynamic PLs are often slow.)

2025-04-02 CS 331 Spring 2025 28

How Interpreters Work
JIT [6/8]

Part of a program containing function ff is shown below.

count = 0

x = {}

function x.gg()

 count = count + 1

end

What this code ends up doing is repeatedly incrementing an
integer count. This can be done very quickly. However, function
ff, in isolation, does not “know” it is doing a fast, easy task.

What can a JIT do about this?

2025-04-02 CS 331 Spring 2025

function ff(t)

 t.gg()

end

for i = 1, 10000000 do

 ff(x)

end

29

How Interpreters Work
JIT [7/8]

count = 0

x = {}

function x.gg()

 count = count + 1

end

After, say, 2000 calls to ff, the JIT observes that ff is very often
called with the table x, and that the gg member of x increments
count, which is an integer. And the relevant section is now hot.

The JIT cannot assume that ff will always be called with x.
However, it can assume that ff will probably be called with x—
and it can produce code that runs very fast in that case.

2025-04-02 CS 331 Spring 2025

function ff(t)

 t.gg()

end

for i = 1, 10000000 do

 ff(x)

end

30

How Interpreters Work
JIT [8/8]

The JIT can now compile function ff to machine code that acts like
the “C” code at right.

function ff(t)

 t.gg()

end

The compiled code acts correctly no matter what parameter ff is
called with. But it is very fast when ff is called with x. The
parameter is usually x, so the program executes quickly.

Note, however, that all this only works if the JIT is specifically
checking for the things we said it “observes”. What does a JIT
need to be checking for? This is a tricky issue.

2025-04-02 CS 331 Spring 2025

void ff(object * t_ptr)

{

 if (t_ptr == &x)

 ++count;

 else …

}

31

How Interpreters Work
Summary

There are four main strategies for designing an interpreter. I list
them from worst to best performance.

▪ Do little or no processing of the source code. Execute it line by line,
using a text-based interpreter. Rare today, except for shells.

▪ Parse the source code to get an AST. Execute the AST directly,
using a tree-walk interpreter. Rare today.

▪ Compile to a byte code. Execute the byte code directly, instruction
by instruction, using a virtual machine. Very common today.

▪ Compile to a byte code. Execute the byte code using a JIT, which
compiles the byte code to machine language as it executes.
Somewhat common today, and getting more common.

2025-04-02 CS 331 Spring 2025 32

	Slide 1: Specifying Semantics How Interpreters Work
	Slide 2: Unit Overview The Scheme Programming Language
	Slide 3: Unit Overview Semantics & Interpretation
	Slide 4
	Slide 5: Review Introduction to Semantics
	Slide 6
	Slide 7: Specifying Semantics Introduction [1/3]
	Slide 8: Specifying Semantics Introduction [2/3]
	Slide 9: Specifying Semantics Introduction [3/3]
	Slide 10: Specifying Semantics Operational Semantics
	Slide 11: Specifying Semantics Denotational Semantics [1/2]
	Slide 12: Specifying Semantics Denotational Semantics [2/2]
	Slide 13: Specifying Semantics PL Semantics Specification [1/3]
	Slide 14: Specifying Semantics PL Semantics Specification [2/3]
	Slide 15: Specifying Semantics PL Semantics Specification [3/3]
	Slide 16
	Slide 17: How Interpreters Work Refresher: Compilation & Interpretation [1/2]
	Slide 18: How Interpreters Work Refresher: Compilation & Interpretation [2/2]
	Slide 19: How Interpreters Work Kinds of Interpreters
	Slide 20: How Interpreters Work Text-Based Interpreter
	Slide 21: How Interpreters Work Tree-Walk Interpreter
	Slide 22: How Interpreters Work Virtual Machine [1/2]
	Slide 23: How Interpreters Work Virtual Machine [2/2]
	Slide 24: How Interpreters Work JIT [1/8]
	Slide 25: How Interpreters Work JIT [2/8]
	Slide 26: How Interpreters Work JIT [3/8]
	Slide 27: How Interpreters Work JIT [4/8]
	Slide 28: How Interpreters Work JIT [5/8]
	Slide 29: How Interpreters Work JIT [6/8]
	Slide 30: How Interpreters Work JIT [7/8]
	Slide 31: How Interpreters Work JIT [8/8]
	Slide 32: How Interpreters Work Summary

