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Unit Overview
The Scheme Programming Language

Topics

▪ PL feature: identifiers & values

▪ PL feature: reflection

▪ PL category: Lisp-family PLs

▪ Introduction to Scheme

▪ Scheme: basics

▪ Scheme: evaluation

▪ Scheme: data

▪ Scheme: macros
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Unit Overview
Semantics & Interpretation

Topics

▪ Introduction to semantics

▪ Specifying semantics

▪ How interpreters work

▪ Writing an interpreter


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Review
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Review
Introduction to Semantics

Syntax is the correct structure of code.

Semantics is the meaning of code.

Some things the semantics of a PL might address:

Runtime behavior of code “a + b” computes the sum of the 

values of a, b and returns the result.

Static typing “int n;” declares a variable named n 

of type int.

Data structure organization “class Zz { int _a, _b; };” 

declares a class named Zz with two 

private data members: _a, _b.

Correctness of cases “switch (n) { case 1: case 1:

a=0; }” is an illegal switch-statement, 

because it contains duplicate cases.

Dynamic 
Semantics

Static 
Semantics 

(in some PLs)
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Specifying Semantics
Introduction [1/3]

From the first day of class.

Consider. Alice invents a PL and writes a precise description of it—a 
specification. Now Bob and Carol want to write compilers for 
this PL.

With a properly written specification, Bob will be able to write a 
compiler without talking to Alice. Carol will be able to write a 
compiler without talking to Alice or Bob. The two compilers will 
compile the same programs. The executables produced by these 
compilers will do the same things.

How does Alice write a specification? How do Bob and Carol use it?

We have answered these questions as they relate to specifying the 
syntax of a PL. Now, what about the semantics of a PL?
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Specifying Semantics
Introduction [2/3]

A formal specification method is a mathematically based 
technique for describing something. Formal specifications use 
precisely defined notation. Other methods are informal.

For example, we can formally specify a language using a regular 
expression: /xy*/

Or we can informally specify it by describing it in words: strings 
that consist of an x character followed by zero or more y 
characters.

We have looked at formal methods for specifying the syntax of a 
PL—in particular, phrase-structure grammars.

Formal semantics refers to formal specification methods for 
semantics.
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Specifying Semantics
Introduction [3/3]

We look very briefly at two formal-semantics specification 
methods. We will not cover notation.

▪ Operational semantics. Specify semantics of a PL in terms of the 
semantics of some other PL or abstract machine (usually the latter).

▪ Denotational semantics. Specify semantics by representing state 
& values with mathematical objects, commands & computations by 
functions.
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Specifying Semantics
Operational Semantics

Operational semantics is the name given to a number of 
methods for specifying semantics. These focus on the actions or 
computations that various pieces of code perform.

There are a number of different kinds of operational semantics. 
What they have in common is that the actions/computations of 
code are expressed in terms of some other system whose 
semantics is already known. This system might be:

▪ A mathematical system.

▪ An abstract machine—perhaps some kinds of automaton.

▪ Some other programming language.

For operational semantics to be worth using, this other system 
must be precisely specified, and also simpler than the PL whose 
semantics is being described.
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Specifying Semantics
Denotational Semantics [1/2]

Denotational semantics is another method for specifying 
semantics. It involves the construction of mathematical objects 
called denotations, which describe the meanings of program 
entities. The denotation of an entity is described in terms of the 
denotations of the entities it is composed of.

Here is a ridiculously simple example.

Consider the following grammar.

digit → '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

number → digit

number → number digit
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Specifying Semantics
Denotational Semantics [2/2]

digit → '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

number → digit

number → number digit

We describe a function m that, given a program entity, returns its 
denotation. In this case, the denotation will be an integer.

▪ In the first production, for a digit d, m(d) is the usual numeric 
value. So m('0') = 0, m('1') = 1, etc.

▪ In the second production, if a number n is the digit d, then m(n) = 
m(d).

▪ In the third production, if a number n expands to a number n0 

followed by a digit d, then m(n) = 10×m(n0) + m(d).
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Specifying Semantics
PL Semantics Specification [1/3]

Formal methods for specifying syntax have been very successful. 
Since the late 1970s, virtually all PLs have had a syntax 
specification in terms of some kinds of grammar.

However, formal semantics has been much less successful.

In practice, the semantics of a PL is usually specified in one of two 
ways.

▪ Part formally, part informally. Perhaps the semantics of the core 
constructions of the PL is described informally, while higher level 
constructions are described using formal semantics, in terms of the 
core. Example: Haskell.

▪ Entirely informally, with no formal semantics at all. The 
meaning/effect of the various constructions is explained. Example: 
C++.

There are PLs with a complete formal-semantics specification. But 
this is relatively rare.
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Specifying Semantics
PL Semantics Specification [2/3]

In some PLs, it is possible for code to have no specified semantics. 
Such code is said to have undefined behavior.

For example, the C++ Standard does not specify the semantics of 
code that accesses an array using an out-of-range index.

Consider the following C++ code:

k = 99;

int arr[5];  // int array of size 5

arr[k] = 3;  // Index out-of-range – UNDEFINED BEHAVIOR

Q. Why is no semantics specified? Hint. Not because the writers of 
the Standard made a mistake.

A. To give compiler writers freedom. Code only needs to work for 
an in-range index. A compiler writer does not need to worry 
about what the generated code does for an out-of-range index; 
no matter what it does, it will be compliant with the Standard.
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Specifying Semantics
PL Semantics Specification [3/3]

TO DO

▪ Look at the official semantics specifications of various programming 
languages.
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Done. We looked at 

semantics specifications 
for C++ and Haskell.
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How Interpreters Work
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How Interpreters Work
Refresher: Compilation & Interpretation [1/2]

Recall: a compiler takes code in one PL (the source language) 
and translates it into code in another PL (the target language).

Remember that the target language is not necessarily machine 
language (native code).

An interpreter takes code in some PL and executes it.
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Source

Language

Target

Language
Compiler

Source

Language
Interpreter

Remember:
  • A compiler translates.
  • An interpreter executes.
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How Interpreters Work
Refresher: Compilation & Interpretation [2/2]

Compilation and interpretation are not mutually exclusive. Many 
modern interpreters begin by compiling to an intermediate 
representation (IR)—perhaps a byte code—which is then 
interpreted directly.

An interpreter or compiler is rarely a monolithic thing. It will be 
made of separate components (which are composed of 
components, which are composed of components …).
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Lua

Byte Code

Standard Lua Interpreter
Lua

Lua Byte Code 
Interpreter

Lua 

Compiler

IR
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How Interpreters Work
Kinds of Interpreters

While an interpreter may go through many initial steps (lexical 
analysis, syntax analysis, byte-code generation, etc.), 
eventually, the code, in whatever form it ends up in, will need to 
be executed.

The code module that does the actual execution will usually lie in 
one of the following four categories:

▪ Text-Based Interpreter

▪ Tree-Walk Interpreter

▪ Virtual Machine

▪ JIT

Next we look at each of these and how it works.
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How Interpreters Work
Text-Based Interpreter

A text-based interpreter is one that goes through the high-level 
source code and executes it directly, line by line, with little or no 
preprocessing and no intermediate representation used.

Text-based interpreters used to be common. In particular, in the 
late 1970s, interpreters for the dialects of the BASIC 
programming language used on early microcomputers were 
mostly text-based.

However, text-based interpreters generally offer poor performance 
compared to other methods, and their use has faded. Today 
they may be used to execute the scripting languages associated 
with some command-line shells, but not for much else.
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How Interpreters Work
Tree-Walk Interpreter

Suppose we parse our source code to obtain an AST. Processing 
the AST is typically done via mutually recursive functions. A 
function is called for the root node. It makes a function call for 
each of its children, and so on.
This is called walking the tree.

In a tree-walk interpreter,
these functions do the execution
without any further processing.

We know of faster methods; tree-walk interpreters are uncommon.
However, they are easy to write. An early release of a PL might 
include a tree-walk interpreter, with faster interpreters written 
later. The Ruby PL was handled this way, for example.
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*

+ b

a 2

A function is called for 
the root node.

It makes a function call 
for each of its children.

AST

These make calls for 
their children, etc.
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How Interpreters Work
Virtual Machine [1/2]

The fastest ways to execute code involve compilation based on the 
AST. In an interpreter, such a compiler will usually target a 
machine-language-like programming language designed 
specifically to be the target PL: a byte code.

Code that executes a very low-level PL like a machine language or 
a byte code is called a virtual machine (VM). Some VMs 
emulate processors and portions of computer hardware; these 
execute some kind of machine language. Other VMs execute 
some kind of byte code and might be used as shown above.
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Byte

Code

Interpreter
High-Level

Virtual 

Machine
CompilerPL
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How Interpreters Work
Virtual Machine [2/2]

A virtual machine that is used in a PL interpreter will execute the 
byte code directly, instruction by instruction.

An interpreter that does compilation to a byte code followed by 
execution by a VM, as shown above, appears to be the most 
common kind of interpreter used today. The standard 
interpreters for Lua, Python, and any number of other 
programming languages use this design.
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Byte

Code

Interpreter
High-Level

Virtual 
Machine

CompilerPL
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How Interpreters Work
JIT [1/8]

Some very fast interpreters execute byte code using a JIT—or, 
more fully, a JIT (Just-In-Time) compiler. This compiles byte 
code, usually to machine language, as it executes.

This design is increasingly common. It is used, for example, by the 
interpreters LuaJIT (for Lua) and PyPy (for Python).

However, while a well written JIT is fast, it can be labor-intensive 
to design and code. The decision to write a JIT or something 
slower depends on whether fast execution is worth the effort.
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Byte

Code

Interpreter
High-Level

Compiler JITPL
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How Interpreters Work
JIT [2/8]

The JIT was invented in the late 1980s at Xerox’s Palo Alto 
Research Center (PARC), for the programming language Self.

In the late 1990s, the Self JIT was the basis of an implementation 
of the Java Virtual Machine (JVM) called Hotspot—which 
became the default JVM implementation.

All JITs written since have been inspired (at least) by Hotspot.

JITs might seem magical. Let’s look at how they work.
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JVM

JIT
Byte

Code

Java
Compiler

Java
Java Byte 
Code File
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How Interpreters Work
JIT [3/8]

A JIT divides up code to be executed into sections. Ideally, sections 
involve little flow of control. The JIT tracks whether each section

▪ is in byte code or has been compiled to machine language, and

▪ for the latter, how aggressively the section was optimized.

A byte-code section is executed by a
VM. A machine-language section
can be called like a function.

Between section executions, control
returns to the main JIT code. It
may compile a byte-code section
to machine language, or it may
recompile a machine language
section with more optimization,
or it may do no compilation.
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Main JIT Code

Virtual 
Machine

Byte-Code 
Section

Machine-
Language 
Section

Call Return

Executes

Call Return

Typically, there are many 
sections, not just two.
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How Interpreters Work
JIT [4/8]

“Just-in-time” actually means compiling at the optimal time.

▪ Compiling early helps realize the benefits sooner.

▪ But later compilation can use information from code execution—for 
example, in profile-based optimizations, based on what portions 
of the code spend the most time executing.

Each code section is rated cold to hot, indicating
the priority of fast execution. A hot section is:

▪ more likely to be compiled,

▪ more likely to be aggressively optimized, and,

▪ more likely to be re-compiled with more optimization.

A section’s hot/cold rating may be affected by:

▪ How many times the section has been executed.

▪ How much time the system has spent executing the section.

▪ How much of a priority fast execution is at that point.
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Hot

Cold

Speed is a 
high priority

Speed is a 
low priority

This is how a typical 
JIT works. Some JITs 

may be different.
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How Interpreters Work
JIT [5/8]

Here is an example that may help to explain performance 
improvements with a JIT. Consider the following Lua function.

function ff(t)

    t.gg()

end

What does function ff actually do?

▪ First, it checks whether t is a table. If not, it raises an exception.

▪ Then it checks whether t has a gg member—or a metatable with an 
__index member. If not, it raises an exception.

▪ Having found gg, it checks whether it is callable (a function or a 
table with a metatable having a __call member). If not, it raises 
an exception.

▪ If all is well, then it calls gg().

That’s a lot! (Issues like this are why dynamic PLs are often slow.)
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How Interpreters Work
JIT [6/8]

Part of a program containing function ff is shown below.

count = 0

x = {}

function x.gg()

    count = count + 1

end

What this code ends up doing is repeatedly incrementing an 
integer count. This can be done very quickly. However, function 
ff, in isolation, does not “know” it is doing a fast, easy task.

What can a JIT do about this?
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function ff(t)

    t.gg()

end

for i = 1, 10000000 do

    ff(x)

end
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How Interpreters Work
JIT [7/8]

count = 0

x = {}

function x.gg()

    count = count + 1

end

After, say, 2000 calls to ff, the JIT observes that ff is very often 
called with the table x, and that the gg member of x increments 
count, which is an integer. And the relevant section is now hot.

The JIT cannot assume that ff will always be called with x. 
However, it can assume that ff will probably be called with x—
and it can produce code that runs very fast in that case.
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function ff(t)

    t.gg()

end

for i = 1, 10000000 do

    ff(x)

end
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How Interpreters Work
JIT [8/8]

The JIT can now compile function ff to machine code that acts like 
the “C” code at right.

function ff(t)

    t.gg()

end

The compiled code acts correctly no matter what parameter ff is 
called with. But it is very fast when ff is called with x. The 
parameter is usually x, so the program executes quickly.

Note, however, that all this only works if the JIT is specifically 
checking for the things we said it “observes”. What does a JIT 
need to be checking for? This is a tricky issue.
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void ff(object * t_ptr)

{

    if (t_ptr == &x)

        ++count;

    else …

}
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How Interpreters Work
Summary

There are four main strategies for designing an interpreter. I list 
them from worst to best performance.

▪ Do little or no processing of the source code. Execute it line by line, 
using a text-based interpreter. Rare today, except for shells.

▪ Parse the source code to get an AST. Execute the AST directly, 
using a tree-walk interpreter. Rare today.

▪ Compile to a byte code. Execute the byte code directly, instruction 
by instruction, using a virtual machine. Very common today.

▪ Compile to a byte code. Execute the byte code using a JIT, which 
compiles the byte code to machine language as it executes. 
Somewhat common today, and getting more common.
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