
Scheme: Macros

CS 331 Programming Languages

Lecture Slides

Friday, March 28, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell



2025-03-28 CS 331 Spring 2025

Unit Overview
The Scheme Programming Language

Topics

▪ PL feature: identifiers & values

▪ PL feature: reflection

▪ PL category: Lisp-family PLs

▪ Introduction to Scheme

▪ Scheme: basics

▪ Scheme: evaluation

▪ Scheme: data

▪ Scheme: macros















2



Review

2025-03-28 CS 331 Spring 2025 3



Review
Introduction to Scheme

Scheme is a Lisp-family PL with a minimalist design philosophy.

Scheme code consists of parenthesized lists, which may contain 
atoms or other lists. List items are separated by space; blanks 
and newlines between list items are treated the same.

(define (print-sum-2-7)

  (display (+ 2 7))

  )

2025-03-28 CS 331 Spring 2025 4



Review
Scheme: Evaluation

Normal evaluation rule for a list: attempt to evaluate each list 
item, then attempt to call the result from the first item, as a 
procedure, with the results from the others as its arguments.

> (+ (- 4 1) (* 2 3))

9

When the first item of a list is a macro, the arguments are passed 
to it unevaluated.

> (define abc 42)

2025-03-28 CS 331 Spring 2025

+ is a symbol that evaluates to a procedure.

Using the same evaluation method, these 
evaluate to 3 and 6, respectively.

define is a macro.

abc is passed to define without being 
evaluated. So define sees the symbol abc, 
not its value.

5



Review
Scheme: Data

2025-03-28 CS 331 Spring 2025

Our procedure add takes arbitrarily many arguments:

> (add 1 2 3 4 5)

15

The above list (add 1 2 3 4) is the same as (add . (1 2 3 4)). 
So a procedure call is a pair. The car is the
procedure; the cdr is a list of the arguments.

define will also take this form of a “picture” of
a procedure call.

(define (add . args)

  …

)

See data.scm.

PROC ARGS

Procedure Call

6



Scheme: Macros

2025-03-28 CS 331 Spring 2025 7



Scheme: Macros
Background — Symbols, Procedures, Code

> (define (cube x) (* x x x))

cube is a symbol. cube now evaluates to a procedure. A 
procedure is a black box; we cannot examine the internals.

We can also write an expression that evaluates to a procedure 
without using define or giving it a name: a lambda.

> (define cube (lambda (x) (* x x x)))  ; Same as above

> ((lambda (x) (* x x x)) 4)            ; No name

64

(* x x x) is code for an expression; it is not a black box. The 
power of Lisp-family PLs lies in the ability
to manipulate code and then evaluate it.

2025-03-28 CS 331 Spring 2025

For code from this topic, 
see macro.scm.

8



Scheme: Macros
Background — Reflection

Lisp-family PLs like Scheme have excellent support for reflection: 
the ability of a program to deal with its own code.

For example, we can build and evaluate expressions at runtime.

> (define a (list '+ 1 'x))

> (define b (list '+ 2 'x))

> (define c (list '* a b))

> c

(* (+ 1 x) (+ 2 x))

> (define x 10)

> (eval c)

132

But the above is not how reflection is usually done in Scheme.

2025-03-28 CS 331 Spring 2025 9



Scheme: Macros
History [1/4]

Early Lisp had code transformations called fexprs. A fexpr is much 
like a procedure, but takes its arguments unevaluated. So a 
fexpr sees its arguments’ ASTs, rather than their values.

Like a procedure, a fexpr is a value. We can bind a variable to a 
fexpr, put fexprs in containers, pass them as arguments, etc.

But code-transformations-as-values are problematic. They allow 
arbitrary changes in the code to happen anywhere.

(ff a b c d e)  ; Is ff bound to a procedure or a fexpr?

                ; If a fexpr, what does it do?

                ; Before execution, we cannot tell!

As a result, writing an optimizing Lisp compiler was difficult—if not 
impossible—since there was little we could actually know about 
code before executing it.

2025-03-28 CS 331 Spring 2025 10



Scheme: Macros
History [2/4]

In the mid-1960s, macros were introduced to Lisp. These are 
specified code transformations that are known to the PL 
implementation, but are not values.

> (define pp +)

> (pp 1 2 3)

6

> (define mm lambda)

ERROR

Macros do not have the code-transformation-as-value problem. By 
the mid-1980s they had largely replaced fexprs in practical Lisp.

Pattern-based macros became common. Code that matches a 
pattern is replaced by other code, then evaluated as usual.

2025-03-28 CS 331 Spring 2025

“lambda”: macro, which is not a value

“+”: procedure, which is a first-class value

11



Scheme: Macros
History [3/4]

The mid-1980s saw discussions about a problem with macros: 
unwanted interactions between symbols.

Consider: below, there are two distinct variables named x. But this 
is not a problem, since procedure parameters are local.

(define (cube x) (* x x x))

(define x 2)

(display (cube (+ x 1)))

Suppose we define a macro analogous to cube. It takes an AST 
called x, which it transforms into a list: * then x three times.

If we use the macro as above, then the x inside the macro and the 
x outside could be treated as the same variable. Our macro 
might do different things in different environments.

2025-03-28 CS 331 Spring 2025

x inside procedure cube

x outside procedure cube

12



Scheme: Macros
History [4/4]

Work-arounds for the problem are available. Many Lisp-family PLs, 
including Scheme, have a standard procedure gensym, which 
returns a symbol guaranteed not to have been used elsewhere.

> (gensym)

g13491

A true solution involves hygienic macros, which limit interaction 
between identifiers in a macro and those outside, in much the 
same way that a procedure does.

Hygienic macros have been optional in Scheme since R4RS (1991) 
and required since R5RS (1998). But other than Scheme and its 
spin-offs, there has been little to no adoption of hygienic macros 
within the Lisp family of PLs. Hygiene limits what a macro can 
do, and some find this unacceptable.

2025-03-28 CS 331 Spring 2025 13



Scheme: Macros
Overview

Scheme has three standard ways to define hygienic pattern-based 
macros. From least powerful to most powerful:

▪ define-syntax-rule

▪ define-syntax + syntax-rules

▪ define-syntax + syntax-case

We will look at the first two in detail and briefly discuss the third.

Note. The standard terminology for Scheme macros uses some 
words differently from the way we do.

▪ Macros are said to be syntax constructions, although their syntax—
in our sense—is no different from anything else in Scheme.

▪ As we will see, the term keyword is also used differently.

2025-03-28 CS 331 Spring 2025 14



Scheme: Macros
Single-Pattern Macros [1/7]

Suppose we wish to define our own version of quote, called 
myquote.

Here is an idea:

> (define myquote quote)

ERROR

But the above does not work. As a macro, quote is not actually 
something that has a value. Rather, it is a syntax construction 
that our Scheme implementation knows about.

However, there is a way to define our myquote macro. Read on.

2025-03-28 CS 331 Spring 2025 15



Scheme: Macros
Single-Pattern Macros [2/7]

In a pattern-based macro, we give a pattern that code can 
match. Any matching code is transformed in a manner that we 
specify. The resulting code is evaluated as usual. (If we want to 
avoid this last step, we can quote the transformed code).

Define a single-pattern macro using define-syntax-rule.

(define-syntax-rule (PATTERN) TRANSFORMED_CODE)

Code that matches PATTERN is replaced by TRANSFORMED_CODE, 
and then evaluate.

2025-03-28 CS 331 Spring 2025 16



Scheme: Macros
Single-Pattern Macros [3/7]

(define-syntax-rule (PATTERN) TRANSFORMED_CODE)

Here is myquote.

(define-syntax-rule (myquote x)

  'x

  )

Above, (myquote x) is a pattern. The rule is that the first word 
matches only itself, while other words match anything. So any 
2-item list beginning with myquote matches. For the purposes of 
the transformation, x means the second item of this list.

> (myquote (+ a b))

(+ a b)

2025-03-28 CS 331 Spring 2025 17



Scheme: Macros
Single-Pattern Macros [4/7]

define-syntax-rule accepts the dot syntax, just like define.

Here is a quoting macro that goes inside the list it quotes. qlist is 
like list, except that it does not evaluate its arguments.

(define-syntax-rule (qlist . args)

  'args

  )

Try it.

> (qlist (+ 1 3) (* 3 8))  ; Arguments NOT evaluated

((+ 1 3) (* 3 8))

> (list (+ 1 3) (* 3 8))   ; Arguments evaluated

(4 24)

2025-03-28 CS 331 Spring 2025 18



Scheme: Macros
Single-Pattern Macros [5/7]

What about actual code transformations?

TO DO

▪ Write a macro swap that takes a 2-item list, reverses the order of 

the items, and evaluates the result.

> (swap ("abc\n" display))

abc

▪ Write a macro toprod that takes a nonempty list, changes the first 
item to *, and evaluates the result (as in reflect.scm).

> (toprod (+ 5 4))

20

2025-03-28 CS 331 Spring 2025

Done. See macro.scm.

19



Scheme: Macros
Single-Pattern Macros [6/7]

TO DO

▪ Write a macro deftwo that binds two symbols, each to its own 

value, as shown below.

> (deftwo a 1 b (+ 2 3))

> a

1

> b

5

2025-03-28 CS 331 Spring 2025

This is all kinda 
silly. Can we write 

a macro that 
someone might 
actually want to 

use?

Done. See macro.scm.

20



Scheme: Macros
Single-Pattern Macros [7/7]

Let’s write a pattern-based macro that implements a for-loop, with 
specified index variable, start and end values, and loop body.

TO DO

▪ Step 1. Write a for-loop macro for-loop1 that is used as follows, 
with proc being called with values 3, 4, 5, 6, 7.

(define (proc i) (begin (display i) (newline)))

(for-loop1 (3 7) proc)

▪ Step 2. Write a for-loop macro for-loop2 that is used as follows.

(for-loop2 (i 3 7)

    (display i)

    (newline)

    )

2025-03-28 CS 331 Spring 2025

Done. See macro.scm.

21



Scheme: Macros
TO BE CONTINUED …

Scheme: Macros will be continued next time.

2025-03-28 CS 331 Spring 2025 22


	Slide 1: Scheme: Macros
	Slide 2: Unit Overview The Scheme Programming Language
	Slide 3
	Slide 4: Review Introduction to Scheme
	Slide 5: Review Scheme: Evaluation
	Slide 6: Review Scheme: Data
	Slide 7
	Slide 8: Scheme: Macros Background — Symbols, Procedures, Code
	Slide 9: Scheme: Macros Background — Reflection
	Slide 10: Scheme: Macros History [1/4]
	Slide 11: Scheme: Macros History [2/4]
	Slide 12: Scheme: Macros History [3/4]
	Slide 13: Scheme: Macros History [4/4]
	Slide 14: Scheme: Macros Overview
	Slide 15: Scheme: Macros Single-Pattern Macros [1/7]
	Slide 16: Scheme: Macros Single-Pattern Macros [2/7]
	Slide 17: Scheme: Macros Single-Pattern Macros [3/7]
	Slide 18: Scheme: Macros Single-Pattern Macros [4/7]
	Slide 19: Scheme: Macros Single-Pattern Macros [5/7]
	Slide 20: Scheme: Macros Single-Pattern Macros [6/7]
	Slide 21: Scheme: Macros Single-Pattern Macros [7/7]
	Slide 22: Scheme: Macros TO BE CONTINUED …

