
Scheme: Data

CS 331 Programming Languages

Lecture Slides

Wednesday, March 26, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-03-26 CS 331 Spring 2025

Unit Overview
The Scheme Programming Language

Topics

▪ PL feature: identifiers & values

▪ PL feature: reflection

▪ PL category: Lisp-family PLs

▪ Introduction to Scheme

▪ Scheme: basics

▪ Scheme: evaluation

▪ Scheme: data

▪ Scheme: macros













2

Review

2025-03-26 CS 331 Spring 2025 3

Review
Introduction to Scheme, Scheme: Basics

Scheme is a Lisp-family PL with a minimalist design philosophy.

Scheme code consists of parenthesized lists, which may contain
atoms or other lists. List items are separated by space; blanks
and newlines between list items are treated the same.

(define (print-sum-2-7)

 (display (+ 2 7))

)

Normal evaluation rule for a list: attempt to evaluate each list
item, then attempt to call the result from the first item, as a
procedure, with the results from the others as its arguments.
For example, display and + (above) evaluate to procedures.

Things that break this rule, like define (above), are macros.

2025-03-26 CS 331 Spring 2025 4

Review
From the Scheme Reading

Numeric comparison operators: = < <= > >=

There is no standard numeric inequality operator.

Given a nonempty list, car returns its first item (head), and cdr
returns a list of the remaining items (tail). cons constructs a list,
given head and tail.

> (car '(1 2 3))

1

> (cdr '(1 2 3))

(2 3)

> (cons 1 '(2 3))

(1 2 3)

2025-03-26 CS 331 Spring 2025

Use these
comparison

operators only
with numbers.

Actually, car, cdr,
and cons are more

general, working with
pairs, not just lists.
More on this soon.

5

Review
Scheme: Evaluation — Expressions

eval is a procedure that takes one argument and evaluates it.

Being a procedure, eval does not suppress normal argument
evaluation. So evaluation actually happens twice: the argument
is evaluated, and then it evaluates the result.

> (eval '(+ 2 3))

5

A variation is the procedure apply. This takes a procedure and a
list of arguments. It calls the procedure with the given
arguments and returns the result.

> (apply + '(2 3))

5

2025-03-26 CS 331 Spring 2025

The first evaluation gets rid
of the quote. The second
calls + with 2 and 3 to get 5.

6

Scheme: Data

2025-03-26 CS 331 Spring 2025 7

Scheme: Data
Data Format [1/5]

The dot notation originally used in S-expressions is also valid in
Scheme.

> '(1 . 2)

(1 . 2)

List notation is really shorthand for the equivalent dot notation,
again, just as in the original S-expression syntax.

> '(1 . (2 . (3 . (4 . ()))))

(1 2 3 4)

Dot (.) is not a procedure. It is simply another way of typing S-
expressions. If you want a procedure that puts things together
the way dot does, use cons.

2025-03-26 CS 331 Spring 2025

For code from this topic,
see data.scm.

8

Scheme: Data
Data Format [2/5]

The main building block for constructing data structures in Scheme
is the pair. You can think of this as a node with two pointers.

We get the item referenced by the left pointer using car; similarly
use cdr for the right pointer.

> (car '(1 . 2))

1

> (cdr '(1 . 2))

2

2025-03-26 CS 331 Spring 2025

(1 . 2)

1 2

9

Scheme: Data
Data Format [3/5]

Lists are constructed from pairs and null.

2025-03-26 CS 331 Spring 2025

1

(1 2 3) ≡ (1 . (2 . (3 . ())))
2

3

This represents null. Think of a null pointer,
if you want. (But how it is represented
internally is implementation-dependent.)

I am using this symbol to
mean “is the same as”.

10

Scheme: Data
Data Format [4/5]

The full story on the dot syntax is that the dot may optionally be
added between the last two items of something that otherwise
looks like a list.

2025-03-26 CS 331 Spring 2025

1

(1 2 3)

≡ (1 . (2 . (3 . ())))

2

3

(1 2 . 3)

≡ (1 . (2 . 3))

1

2 3

11

Scheme: Data
Data Format [5/5]

We can create arbitrary binary trees—with the restriction that only
leaf nodes contain data.

2025-03-26 CS 331 Spring 2025

((((() . 8) . 1) . (5 . 1))

5 11

8

12

Scheme: Data
Comparisons [1/4]

Scheme has type-specific comparison procedures.

Comparisons for numbers, as we have seen: = < <= > >=

> (= 3 3.0)

#t

> (> 3 3.1)

#f

Comparisons for non-numeric types are named as type+op+?

> (string=? "abc" "abc")

#t

> (char<? #\b #\a)

#f

2025-03-26 CS 331 Spring 2025 13

Scheme: Data
Comparisons [2/4]

There are several kinds of equality in Scheme.

eq? tests for “same memory location”. I suggest not using it.

eqv? tests for “same primitive value”.

> (eqv? 3 3)

#t

> (eqv? 3 3.0)

#f

> (define a '(1 2))

> (eqv? a '(1 2))

#f

> (eqv? "abc" "abc")

IMPLEMENTATION-DEPENDENT

It is common to use eqv? indirectly. See the next slide.

2025-03-26 CS 331 Spring 2025

Lists and strings are
not primitive values.

14

Scheme: Data
Comparisons [3/4]

Of greater interest is equal?, which does the following:

▪ If the types are different, then return #f.

▪ For primitive values (everything we have covered except strings
and pairs) of the same type, call eqv?.

▪ For pairs, recursively call equal? on the cars & cdrs.

▪ For other non-primitive values (e.g., strings) of the same type, call
an appropriate type-specific equality comparison, if one exists.

So for lists, equal? checks structural equality.

> (define a '(1 (2 3) 4))

> (equal? a '(1 (2 3) 4))

#t

> (equal? "abc" "abc")

#t

2025-03-26 CS 331 Spring 2025 15

Scheme: Data
Comparisons [4/4]

equal? mostly does what we usually want, with one caveat. Since
it always returns #f when the types are different, it can give
undesirable results with numbers.

> (equal? 3 3.0)

#f

I offer the following suggestions.

▪ Use = for numeric equality.

▪ Using equal? is fine for most other kinds of equality.

▪ If you want your code to indicate what type is being compared, or
to flag type errors for other types, then use a type-specific equality
function: string=?, char=?, etc.

▪ Use eq? or eqv? directly only if you are sure of what you are

doing—and probably never.

2025-03-26 CS 331 Spring 2025 16

Scheme: Data
More General Procedures [1/4]

2025-03-26 CS 331 Spring 2025

So far, all the procedures we have written have taken a fixed
number of parameters. But Scheme allows for procedures like
“+”, which can take an arbitrary number of parameters.

Let’s duplicate “+”, in the form of a procedure called add.

> (add 5 3)

8

> (add 1 2 3 4)

10

> (add)

0

We will use “+”, but only as a 2-parameter procedure.

17

Scheme: Data
More General Procedures [2/4]

2025-03-26 CS 331 Spring 2025

Consider a call to add:

> (add 1 2 3 4)

10

The above list (add 1 2 3 4) is the same as (add . (1 2 3 4)).

So a procedure call is a pair. The car is the procedure; the cdr is a
list of the arguments. This is illustrated below.

PROC ARGS

Procedure Call

This is always a list.

18

Scheme: Data
More General Procedures [3/4]

2025-03-26 CS 331 Spring 2025

A procedure call is a pair: (PROC . ARGS). And define will also
take this form of a “picture” of a procedure call.

(define (add . args)

 …

)

TO DO

▪ Write procedure add.

A tricky issue is how to make a recursive call on (cdr args). We
look at this on the next slide.

Done. See data.scm.

19

Scheme: Data
More General Procedures [4/4]

2025-03-26 CS 331 Spring 2025

In writing procedure add, we need to make a recursive call on
(cdr args). How do we do this?

NOT like this (dot is not a procedure!):

(add . (cdr args)) ; WRONG!

The following will actually work, but it is a bit unwieldy:

(eval (cons add (cdr args)))

Situations like this are why apply exists:

(apply add (cdr args))

(add . (cdr args))

is just another way to write
(add cdr args), which is
not what we want.

20

Scheme: Data
Manipulating Trees

2025-03-26 CS 331 Spring 2025

We can write code that deals with a structure, not as a list, but as
a tree, traversing the tree and dealing with atoms in some way.

TO DO

▪ Write a procedure atomsum that is given a tree t and returns the

sum of all the numbers in t.

▪ Write a procedure atommap that is given a procedure f and a tree t

and returns t with each atom replaced by f of that atom.

▪ Write a procedure myflatten that is given a tree t and returns a list
of the atoms in t in inorder-traversal order.

▪ In order to write myflatten easily, we need to be able to
concatenate two lists. Write this first, as procedure concat.

May be helpful:

▪ Every Scheme value is null or a pair or an atom. So any value for
which both null? and pair? both return #f is an atom.

Done. See data.scm.

21

	Slide 1: Scheme: Data
	Slide 2: Unit Overview The Scheme Programming Language
	Slide 3
	Slide 4: Review Introduction to Scheme, Scheme: Basics
	Slide 5: Review From the Scheme Reading
	Slide 6: Review Scheme: Evaluation — Expressions
	Slide 7
	Slide 8: Scheme: Data Data Format [1/5]
	Slide 9: Scheme: Data Data Format [2/5]
	Slide 10: Scheme: Data Data Format [3/5]
	Slide 11: Scheme: Data Data Format [4/5]
	Slide 12: Scheme: Data Data Format [5/5]
	Slide 13: Scheme: Data Comparisons [1/4]
	Slide 14: Scheme: Data Comparisons [2/4]
	Slide 15: Scheme: Data Comparisons [3/4]
	Slide 16: Scheme: Data Comparisons [4/4]
	Slide 17: Scheme: Data More General Procedures [1/4]
	Slide 18: Scheme: Data More General Procedures [2/4]
	Slide 19: Scheme: Data More General Procedures [3/4]
	Slide 20: Scheme: Data More General Procedures [4/4]
	Slide 21: Scheme: Data Manipulating Trees

