
Scheme: Evaluation

CS 331 Programming Languages

Lecture Slides

Monday, March 24, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-03-24 CS 331 Spring 2025

Unit Overview
The Scheme Programming Language

Topics

▪ PL feature: identifiers & values

▪ PL feature: reflection

▪ PL category: Lisp-family PLs

▪ Introduction to Scheme

▪ Scheme: basics

▪ Scheme: evaluation

▪ Scheme: data

▪ Scheme: macros











2

Review

2025-03-24 CS 331 Spring 2025 3

Review
Introduction to Scheme, Scheme: Basics [1/2]

Scheme is a Lisp-family PL with a minimalist design philosophy.

Scheme code consists of parenthesized lists, which may contain
atoms or other lists. List items are separated by space; blanks
and newlines between list items are treated the same.

(define (print-sum-2-7)

 (display (+ 2 7))

)

Normal evaluation rule for a list: attempt to evaluate each list
item, then attempt to call the result from the first item, as a
procedure, with the results from the others as its arguments.
For example, display and + (above) evaluate to procedures.

Things that break this rule, like define (above), are macros.

2025-03-24 CS 331 Spring 2025 4

Review
Scheme: Basics [2/2]

Recall: a predicate is a function returning a Boolean. Traditionally
the name of a Scheme predicate ends in a question mark.

Type-checking predicates take one argument—of any type.

▪ number? Returns true (#t) if given a number, otherwise false (#f).

▪ null? Returns true if its argument is null (an empty list).

▪ pair? Returns true if its argument is a pair. Thus, if the argument is
a list, then it returns true if the list is nonempty. If neither null?
nor pair? returns true for a value, then the value is an atom.

▪ list? Checks if argument is a list. Linear-time, so use sparingly.

> (pair? '(1 2 3))

#t

> (pair? +)

#f

2025-03-24 CS 331 Spring 2025

list? is not actually a type-checking predicate,
since list is not a type or collection of types.

A single quote suppresses evaluation.

5

Scheme: Evaluation

2025-03-24 CS 331 Spring 2025 6

Scheme: Evaluation
Expressions [1/3]

Normal evaluation rule for a list (again): attempt to evaluate each
list item, then attempt to call the result from the first item, as a
procedure, with the results from the others as its arguments.

> (+ (- 4 1) (* 2 3))

9

When the first item of a list is a macro, the arguments are passed
to it unevaluated.

> (define abc 42)

2025-03-24 CS 331 Spring 2025

For code from this topic,
see eval.scm.

+ is a symbol that evaluates to a procedure.

Using the same evaluation method, these
evaluate to 3 and 6, respectively.

define is a macro.

abc is passed to define without being
evaluated. So define sees the symbol abc,
not its value.

7

Scheme: Evaluation
Expressions [2/3]

quote is a macro that takes one argument, It returns the
argument without evaluating it.

> (quote (1 2 3))

(1 2 3)

The leading-single-quote syntax is actually shorthand for quote.

> '(1 2 3) ; Same as (quote (1 2 3))

(1 2 3)

Informally speaking, evaluation removes the quote.

'(1 2 3) (1 2 3)

2025-03-24 CS 331 Spring 2025

evaluation

8

Scheme: Evaluation
Expressions [3/3]

eval is a procedure that takes one argument and evaluates it.

Being a procedure, eval does not suppress normal argument
evaluation. So evaluation actually happens twice: the argument
is evaluated, and then it evaluates the result.

> (eval '(+ 2 3))

5

A variation is the procedure apply. This takes a procedure and a
list of arguments. It calls the procedure with the given
arguments and returns the result.

> (apply + '(2 3))

5

2025-03-24 CS 331 Spring 2025

The first evaluation gets rid
of the quote. The second
calls + with 2 and 3 to get 5.

9

Scheme: Evaluation
Closures

When evaluation of an expression leads to a call to a Scheme
procedure, the call is made in an environment that includes
variables in the environment the procedure was defined in.

In short, a Scheme procedure is a closure. The things we have
done with closures in other PLs work just fine in Scheme.

TO DO

▪ Write some code that uses a closure.

2025-03-24 CS 331 Spring 2025

Done. See eval.scm.

10

Scheme: Evaluation
Local Variables [1/4]

We can create and set local variables, while still programming in a
functional style, using let. This takes two arguments:

▪ A list of 2-item lists, each with a symbol and its desired value.

▪ An expression.

The second argument (the expression) is evaluated with each
symbol locally set to its desired value. The result is returned.

(let

 (

 [a (+ 3 7)]

 [b 8]

)

 (* a b)

)

2025-03-24 CS 331 Spring 2025

Variables a & b are local to
the let. The values set here
are not accessible outside.

With a set to 10 and b set to 8,
this evaluates to 80, which
becomes the value of the let.

Scheme’s let is similar
to Haskell’s let … in.

Scheme has no where,
but one could write it.

Parentheses can be replaced with
brackets, as long as they match.

11

Scheme: Evaluation
Local Variables [2/4]

let defines all its local variables at the same time. So we cannot
use one of these local variables in the definition of another.

If this is a problem, then use let*, which works just like let, but
defines its local variables in order, one after the other.

(let*

 (

 [a (+ 3 7)]

 [b (+ a 1)]

)

 (* a b)

)

2025-03-24 CS 331 Spring 2025

This gets the value set here.

12

Scheme: Evaluation
Local Variables [3/4]

let takes an optional extra first argument: a symbol. This
becomes the name of a procedure that calls the let. The local

variables are not set to the values given; rather, they are
parameters to the procedure.

It is common for the procedure name to be loop.

(let loop

 ([k 5])

 (begin

 (display k)

 (newline)

 (if (> k 1) (loop (- k 1)) (void))

)

)

2025-03-24 CS 331 Spring 2025

void: procedure returning a
“nothing” value.

(void) can be used where
an expression is required,
but there is nothing to do.

The value of k the first time through.

The value of k in the next
iteration of the “loop”.

13

Scheme: Evaluation
Local Variables [4/4]

TO DO

▪ Write filter in Scheme, with each invocation of the procedure calling
each of car and cdr at most once.

▪ Write a Scheme procedure that inputs a number and prints its
square.

▪ Write a Scheme procedure that uses the let-loop construction.

Useful:

▪ read-line—procedure with no arguments; inputs a line of text from
the console and returns it, without the newline

▪ string->number—procedure that takes a string; returns its numeric
form, or #f if there is none

2025-03-24 CS 331 Spring 2025

Done. See eval.scm.

14

Scheme: Evaluation
Laziness [1/4]

Normally, evaluation in Scheme is eager.

However, we can do lazy evaluation in Scheme, using another of
Scheme’s types: promise. A promise is a wrapper around an
expression that leaves the expression unevaluated—until the
promise is forced.

When we force a promise, the expression is evaluated, and the
resulting value is stored in the promise and returned.

2025-03-24 CS 331 Spring 2025 15

Scheme: Evaluation
Laziness [2/4]

Create a promise using the macro delay.

> (define pp (delay (* 20 5)))

The type-checking predicate for promises is promise?.

> (promise? pp)

#t

Force a promise using the procedure force.

> (force pp)

100

2025-03-24 CS 331 Spring 2025 16

Scheme: Evaluation
Laziness [3/4]

Force a promise as many times as you like; evaluation only
happens the first time. The same value is returned each time.

> (define p (delay (begin (display "Eval!\n") (* 7 6))))

> (force p)

Eval!

42

> (force p)

42

> (force p)

42

2025-03-24 CS 331 Spring 2025 17

Scheme: Evaluation
Laziness [4/4]

Forcing something that is not a promise will just return it—after
evaluating, because force is a procedure.

> (force (+ 2 3))

5

Using promises, we can create the kind of lazy infinite lists we saw
in Haskell (but less conveniently): construct a list as usual, from
pairs and null, except that a pair’s car and cdr, instead of being
an item and a list, are promises wrapping an item and a list.

TO DO

▪ Write code to create a lazy infinite list.

▪ Write code to return part of a lazy list—like Haskell’s take. Make
this work with both lazy and normal lists.

2025-03-24 CS 331 Spring 2025

Done. See eval.scm.

18

	Slide 1: Scheme: Evaluation
	Slide 2: Unit Overview The Scheme Programming Language
	Slide 3
	Slide 4: Review Introduction to Scheme, Scheme: Basics [1/2]
	Slide 5: Review Scheme: Basics [2/2]
	Slide 6
	Slide 7: Scheme: Evaluation Expressions [1/3]
	Slide 8: Scheme: Evaluation Expressions [2/3]
	Slide 9: Scheme: Evaluation Expressions [3/3]
	Slide 10: Scheme: Evaluation Closures
	Slide 11: Scheme: Evaluation Local Variables [1/4]
	Slide 12: Scheme: Evaluation Local Variables [2/4]
	Slide 13: Scheme: Evaluation Local Variables [3/4]
	Slide 14: Scheme: Evaluation Local Variables [4/4]
	Slide 15: Scheme: Evaluation Laziness [1/4]
	Slide 16: Scheme: Evaluation Laziness [2/4]
	Slide 17: Scheme: Evaluation Laziness [3/4]
	Slide 18: Scheme: Evaluation Laziness [4/4]

