Scheme: Evaluation

CS 331 Programming Languages
Lecture Slides
Monday, March 24, 2025

Glenn G. Chappell
Department of Computer Science

University of Alaska Fairbanks
ggchappell@alaska.edu

© 2017-2025 Glenn G. Chappell

Unit Overview

The Scheme Programming Language

Topics
PL feature: identifiers & values

Vs
Vs
Vs
Vs
Vs

PL feature: reflection

PL category: Lisp-family PLs
Introduction to Scheme

Scheme:
Scheme:
Scheme:
Scheme:

2025-03-24

basics
evaluation
data
macros

CS 331 Spring 2025

Review

2025-03-24 CS 331 Spring 2025

Review
Introduction to Scheme, Scheme: Basics [1/2]

Scheme is a Lisp-family PL with a minimalist design philosophy.

Scheme code consists of parenthesized lists, which may contain
atoms or other lists. List items are separated by space; blanks
and newlines between list items are treated the same.

(define (print-sum-2-7)
(display (+ 2 7))
)

Normal evaluation rule for a list: attempt to evaluate each list
item, then attempt to call the result from the first item, as a
procedure, with the results from the others as its arguments.
For example, display and + (above) evaluate to procedures.

Things that break this rule, like define (above), are macros.

2025-03-24 CS 331 Spring 2025

Review
Scheme: Basics [2/2]

Recall: a predicate is a function returning a Boolean. Traditionally
the name of a Scheme predicate ends in a question mark.

Type-checking predicates take one argument—of any type.
= number? Returns true (#t) if given a number, otherwise false (#£).
= null? Returns true if its argument is null (an empty list).

= pair? Returns true if its argument is a pair. Thus, if the argument is
a list, then it returns true if the list is nonempty. If neither null>
nor pair? returns true for a value, then the value is an atom.

= 1list? Checks if argument is a list. Linear-time, so use sparingly.
\

> (pair? ' (
ft \
> (pair? +)
#f

list? is not actually a type-checking predicate,
1 2 3)) since list is not a type or collection of types.

A single quote suppresses evaluation.

2025-03-24 CS 331 Spring 2025 5

Scheme: Evaluation

2025-03-24 CS 331 Spring 2025

Scheme: Evaluation
Expressions [1/3]

Normal evaluation rule for a list (again): attempt to evaluate each
list item, then attempt to call the result from the first item, as a

procedure, with the results from the others as its arguments.
Ve + is @ symbol that evaluates to a procedure.

> (+ (=4 1) (* 2 3))
; N AN

Using the same evaluation method, these
evaluate to 3 and 6, respectively.

When the first item of a list is @ macro, the arguments are passed

to it unevaluated. |
/ define IS @ macro.

> (define abc 42)
AN

abc is passed to define without being
evaluated. So define sees the symbol abc,
not its value.

For code from this topic,
See eval.scm.

2025-03-24 CS 331 Spring 2025

Scheme: Evaluation
Expressions [2/3]

quote iS @ macro that takes one argument, It returns the
argument without evaluating it.

> (quote (1 2 3))
(1 2 3)

The leading-single-quote syntax is actually shorthand for quote.

> '"(1 2 3) ; Same as (quote (1 2 3))
(1 2 3)

Informally speaking, evaluation removes the quote.

'(1 2 3) =—s (1 2 3)

evaluation

2025-03-24 CS 331 Spring 2025

Scheme: Evaluation
Expressions [3/3]

eval is a procedure that takes one argument and evaluates it.

Being a procedure, eval does not suppress normal argument
evaluation. So evaluation actually happens twice: the argument
is evaluated, and then it evaluates the result.

> "+
(eval (2 3)) <—— The first evaluation gets rid

5 of the quote. The second
calls + with 2 and 3 to get 5.

A variation is the procedure apply. This takes a procedure and a
list of arguments. It calls the procedure with the given
arguments and returns the result.

> (apply + "(2 3))
5

2025-03-24 CS 331 Spring 2025

Scheme: Evaluation
Closures

When evaluation of an expression leads to a call to a Scheme
procedure, the call is made in an environment that includes
variables in the environment the procedure was defined in.

In short, a Scheme procedure is a closure. The things we have
done with closures in other PLs work just fine in Scheme.

TO DO
= Write some code that uses a closure.

Done. See eval.scnm.

2025-03-24 CS 331 Spring 2025

10

Scheme: Evaluation
Local Variables [1/4]

We can create and set local variables, while still programming in a
functional style, using 1et. This takes two arguments:
= A list of 2-item lists, each with a symbol and its desired value.
= An expression.

The second argument (the expression) is evaluated with each
symbol locally set to its desired value. The result is returned.

Parentheses can be replaced with

(let brackets, as long as they match.
o/ /

[a (+ 3 7)1 Variables a & b are local to
the 1et. The values set here

[b 8] are not accessible outside.
)
: Scheme’s let is similar
* 3 b With a set to 10 and b set to 8, p .
() —— this evaluates to 80, which to Haskell’s 1et ... in.
) becomes the value of the let. Scheme has no where,

but one could write it.

2025-03-24 CS 331 Spring 2025 11

Scheme: Evaluation
Local Variables [2/4]

let defines all its local variables at the same time. So we cannot
use one of these local variables in the definition of another.

If this is a problem, then use 1et*, which works just like 1et, but
defines its local variables in order, one after the other.

(let™
(&
la] (+ 3 7)1
b (+[a] 1)]
) ™~
(* a D) This gets the value set here.

)

2025-03-24 CS 331 Spring 2025 12

Scheme: Evaluation
Local Variables [3/4]

let takes an optional extra first argument: a symbol. This
becomes the name of a procedure that calls the 1et. The local

variables are not set to the values given; rather, they are
parameters to the procedure.

It is common for the procedure name to be loop.

(let loop
([k 5])

(begirp The value of k the first time through.
(display k)

void: procedure returning a

A “nothing” value.
(1f (> k 1) (loop (- k 1)) (void)) (void) can be used where

(newline)

—— an expression is required,
) 7\ but there is nothing to do.
) The value of k in the next

iteration of the “loop”.

2025-03-24 CS 331 Spring 2025 13

Scheme: Evaluation
Local Variables [4/4]

TO DO

= Write filter in Scheme, with each invocation of the procedure calling
each of car and cdr at most once.

= Write a Scheme procedure that inputs a number and prints its
square.

= Write a Scheme procedure that uses the let-loop construction.

Done. See eval.scm.

Useful:

= read-line—procedure with no arguments; inputs a line of text from
the console and returns it, without the newline

= string->number—procedure that takes a string; returns its numeric
form, or #£ if there is none

2025-03-24 CS 331 Spring 2025 14

Scheme: Evaluation
Laziness [1/4]

Normally, evaluation in Scheme is eager.

However, we can do lazy evaluation in Scheme, using another of
Scheme’s types: promise. A promise is a wrapper around an
expression that leaves the expression unevaluated—until the
promise is forced.

When we force a promise, the expression is evaluated, and the
resulting value is stored in the promise and returned.

2025-03-24 CS 331 Spring 2025 15

Scheme: Evaluation
Laziness [2/4]

Create a promise using the macro delay.

> (define pp (delay (* 20 5)))

The type-checking predicate for promises is promise?.

> (promise? pp)
#t

Force a promise using the procedure force.

> (force pp)
100

2025-03-24 CS 331 Spring 2025

16

Scheme: Evaluation

Laziness [3/4]

Force a promise as many times as you like; evaluation only
happens the first time. The same value is returned each time.

> (define p

> (force p)
Eval!

42

> (force p)
472

> (force p)
472

2025-03-24

(delay

(begin (display "Eval!\n")

CS 331 Spring 2025

(* 7.6))))

17

Scheme: Evaluation

Laziness [4/4]

Forcing something that is not a promise will just return it—after
evaluating, because force is a procedure.

> (force (+ 2 3))
5

Using promises, we can create the kind of lazy infinite lists we saw
in Haskell (but less conveniently): construct a list as usual, from
pairs and null, except that a pair’s car and cdr, instead of being
an item and a list, are promises wrapping an item and a list.

TO DO

= Write code to create a lazy infinite list.

= Write code to return part of a lazy list—like Haskell’'s take. Make

this work with both lazy and normal lists.
Done. See eval.scm.

2025-03-24 CS 331 Spring 2025 18

	Slide 1: Scheme: Evaluation
	Slide 2: Unit Overview The Scheme Programming Language
	Slide 3
	Slide 4: Review Introduction to Scheme, Scheme: Basics [1/2]
	Slide 5: Review Scheme: Basics [2/2]
	Slide 6
	Slide 7: Scheme: Evaluation Expressions [1/3]
	Slide 8: Scheme: Evaluation Expressions [2/3]
	Slide 9: Scheme: Evaluation Expressions [3/3]
	Slide 10: Scheme: Evaluation Closures
	Slide 11: Scheme: Evaluation Local Variables [1/4]
	Slide 12: Scheme: Evaluation Local Variables [2/4]
	Slide 13: Scheme: Evaluation Local Variables [3/4]
	Slide 14: Scheme: Evaluation Local Variables [4/4]
	Slide 15: Scheme: Evaluation Laziness [1/4]
	Slide 16: Scheme: Evaluation Laziness [2/4]
	Slide 17: Scheme: Evaluation Laziness [3/4]
	Slide 18: Scheme: Evaluation Laziness [4/4]

