
Scheme: Basics

CS 331 Programming Languages

Lecture Slides

Friday, March 21, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-03-21 CS 331 Spring 2025

Unit Overview
The Scheme Programming Language

Topics

▪ PL feature: identifiers & values

▪ PL feature: reflection

▪ PL category: Lisp-family PLs

▪ Introduction to Scheme

▪ Scheme: basics

▪ Scheme: evaluation

▪ Scheme: data

▪ Scheme: macros









2

Review

2025-03-21 CS 331 Spring 2025 3

Review
Introduction to Scheme [1/3]

Scheme is a Lisp-family PL with a minimalist design philosophy.

Scheme code consists of parenthesized lists, which may contain
atoms or other lists. List items are separated by space; blanks
and newlines between list items are treated the same.

(define (hello-world)

 (begin

 (display "Hello, world!")

 (newline)

)

)

2025-03-21 CS 331 Spring 2025 4

Review
Introduction to Scheme [2/3]

Scheme’s type system is very similar to that of Lua. However,
Scheme’s fixed set of types has something like 36 types—as
compared to Lua’s 8.

Two heavily used types are pair and null, which are used to
construct lists.

Values of all other types are atoms. Here are a few of these:

▪ Booleans: #t, #f.

▪ Strings: "This is a string."

▪ Characters: #\a

▪ Symbols—first-class identifiers: abc !@a= a-long-symbol?

▪ Number types, including arbitrarily large integers, floating-point
numbers, exact rational numbers, complex numbers.

▪ Procedure types: first-class functions.

2025-03-21 CS 331 Spring 2025 5

Review
Introduction to Scheme [3/3]

Scheme has no special syntax for flow of control.

Here is some Lua code and more or less equivalent Scheme code.

Lua

if x == 3 then

 io.write("three")

else

 io.write("other")

end

Scheme uses the same kind of syntax for flow of control (if),
operators (=), and regular function calls (display). In Lua—and
most other PLs—different syntax is used for these three.

2025-03-21 CS 331 Spring 2025

Scheme

(if (= x 3)

 (display "three")

 (display "other")

)

6

Scheme: Basics

2025-03-21 CS 331 Spring 2025 7

Scheme: Basics
From the Reading: Expressions, Defining

The normal evaluation rule for a list: attempt to evaluate each
item, then attempt to call the result from the first item, as a
procedure, with the results from the others as its arguments.
Example: (list 2 4 10 (+33 66))

Bind a symbol to a value with define: (define abc (+ 21 21))

Create a procedure with define. The first argument is a picture of
a call to the procedure: (define (square x) (* x x))

Note that define breaks the normal evaluation rule, since its
arguments are not evaluated prior to calling define. But define
is not a procedure; it is a macro (discussed on another day).

2025-03-21 CS 331 Spring 2025

For code from this topic,
see basic.scm.

list is a symbol that
evaluates to a procedure.

8

Scheme: Basics
Simple Output

Output anything with display. Print a newline with newline.

> (display '(3 "abc" #t 4.))

(3 abc #t 4.0)

begin is given zero or more expressions. It evaluates them all,
returning the last value. We can use begin to combine I/O calls.

(define (print-stuff)

 (begin

 (display "Hello, ")

 (display "world!")

 (newline)

)

)

2025-03-21 CS 331 Spring 2025

A single quote
suppresses evaluation.

9

Scheme: Basics
Conditionals

if takes a condition and two expressions. One expression is
evaluated and returned, depending on the condition (true/false).

(if (> n 0) (+ n 2) (- n 4))

cond is like if … elseif—or Haskell guards. It takes a list of 2-item
lists, each with a condition and an expression. The expression
with the first true condition is evaluated and returned.
Optionally, the last condition is else (like Haskell’s otherwise).

(cond

 [(> n 0) (+ n 2)]

 [(< n -5) (* n 3)]

 [else (- n 4)]

)

2025-03-21 CS 331 Spring 2025

We may replace parentheses with
brackets. These must match properly.

When typing the closing delimiter,
DrRacket automatically matches an
existing opening delimiter.

I say “true/false”, but actually every
Scheme value is truthy—treated as

true—except for #f (false).

10

Scheme: Basics
Lists [1/2]

Two heavily used procedures are car and cdr. Each takes a pair.
car returns the first item of the pair. cdr returns the second.

For a nonempty list, car returns the first item, while cdr returns a
list of the remaining items.

> (car '(5 4 2 7))

5

> (cdr '(5 4 2 7))

(4 2 7)

cons constructs a pair. We can use it to construct a list from an
item and a list, like “:” in Haskell (which we called “cons”).

> (cons 5 '(4 2 7))

(5 4 2 7)

2025-03-21 CS 331 Spring 2025

Again, a single quote suppresses evaluation.
We do not want to treat 5 as a procedure,
passing 4, 2, 7 as arguments. We want the list.

“car” and “cdr” come from an architecture
used in an early Lisp implementation. They
stood for “Contents of the Address part of

the Register [number]” and “Contents of the
Decrement part of the Register [number]”.

11

Scheme: Basics
Lists [2/2]

It is common to use combinations of car & cdr. For example,
(car (cdr x)) returns the second item of list x.

> (car (cdr '(5 4 2 7))) ; Second item

4

> (car (cdr (cdr '(5 4 2 7)) ; Third item

2

All such combinations, up to 5 car/cdr applications, are
implemented as predefined procedures in Scheme.

> (cadr '(5 4 2 7)) ; Second item

4

> (caddr '(5 4 2 7)) ; Third item

2

2025-03-21 CS 331 Spring 2025 12

Scheme: Basics
Predicates

Recall: a predicate is a function returning a Boolean. Traditionally
the name of a Scheme predicate ends in a question mark.

Type-checking predicates take one argument—of any type.

▪ number? Returns true (#t) if given a number, otherwise false (#f).

▪ null? Returns true if its argument is null (an empty list).

▪ pair? Returns true if its argument is a pair. Thus, if the argument is
a list, then it returns true if the list is nonempty. If neither null?
nor pair? returns true for a value, then the value is an atom.

▪ list? Checks if argument is a list. Linear-time, so use sparingly.

> (number? 3)

#t

> (number? +)

#f

2025-03-21 CS 331 Spring 2025

list? is not actually a type-checking predicate,
since list is not a type. It is not even a collection
of types (as number is, for example).

13

Scheme: Basics
Processing Lists

As in Haskell, we can process lists recursively in Scheme. Often, an
empty list is a natural base case. In the recursive case, handle
the head (car) and recurse on the tail (cdr).

TO DO

▪ Write some list-processing in Scheme: list length, checking for a
list, map, lookup by index, other stuff?

Useful:

▪ null—variable whose value is an empty list

▪ error—takes a message (string) and crashes with that message

▪ lambda—returns an unnamed procedure

▪ Pass a procedure to a procedure by giving it as a normal argument.

(foo bar) ; Pass bar to foo

2025-03-21 CS 331 Spring 2025

Done. See basic.scm.

14

	Slide 1: Scheme: Basics
	Slide 2: Unit Overview The Scheme Programming Language
	Slide 3
	Slide 4: Review Introduction to Scheme [1/3]
	Slide 5: Review Introduction to Scheme [2/3]
	Slide 6: Review Introduction to Scheme [3/3]
	Slide 7
	Slide 8: Scheme: Basics From the Reading: Expressions, Defining
	Slide 9: Scheme: Basics Simple Output
	Slide 10: Scheme: Basics Conditionals
	Slide 11: Scheme: Basics Lists [1/2]
	Slide 12: Scheme: Basics Lists [2/2]
	Slide 13: Scheme: Basics Predicates
	Slide 14: Scheme: Basics Processing Lists

