
Thoughts on Assignment 5
PL Category: Lisp-Family PLs
Introduction to Scheme

CS 331 Programming Languages

Lecture Slides

Wednesday, March 19, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

Thoughts on Assignment 5

2025-03-19 CS 331 Spring 2025 2

Thoughts on Assignment 5
Overview

Assignment 5 is mostly programming in Haskell.

There are three exercises.

A. Run some code in Prolog—another secret message.

B. Write a module in Haskell, containing five specified things—mostly
involving functions that work with lists.

C. Write a stand-alone program in Haskell, of the kind that might be
assigned in an introductory programming class.

2025-03-19 CS 331 Spring 2025 3

Thoughts on Assignment 5
Exercise B [1/4]

In Exercise B, you are to write a Haskell module, in file PA5.hs.

There is a test program (pa5_test.hs) and a skeleton version of
the file you are to write (PA5.hs). The skeleton file will compile
and execute with the test program, but it will not pass the tests.

The skeleton file includes type annotations for each of the entities
you are to write in Exercise B. Furthermore, these type
annotations are correct; you will not need to change them.

I suggest that you begin with the posted version of PA5.hs, and
that you leave the type annotations alone.

2025-03-19 CS 331 Spring 2025 4

Thoughts on Assignment 5
Exercise B [2/4]

One requirement cannot be checked by the test program.

You are to write a function alternatingSums. This is given a list of
numbers; it returns a 2-item tuple containing the sum of the
even-index items of the given list and the sum of the odd-index
items (zero-based indexing).

> alternatingSums [1,10,2,20,3,30]

(6,60)

alternatingSums is required to be be written as a fold, but I
cannot test whether you do this.

alternatingSums xs = fold* … xs where

 …

2025-03-19 CS 331 Spring 2025

Other code goes here.

NOTHING goes here!

This must be one of
foldl, foldr, foldl1, foldr1.

5

Thoughts on Assignment 5
Exercise B [3/4]

How do we write a fold? Consider foldl:

foldl f z xs

xs is the list we are operating on.

z is the starting value. It is what is returned if xs is empty.

f is a 2-parameter function that takes a partial result (what we get
from folding all but the last item) and a new item. It returns the
result we want for the whole list.

For example, the following returns the sum of all list items:

foldl (+) 0 [3,6,2,5,3,7]

2025-03-19 CS 331 Spring 2025 6

Thoughts on Assignment 5
Exercise B [4/4]

foldr is the same as foldl, except that it works from the other
direction.

foldr f z xs

xs is the list we are operating on.

z is the starting value. It is what is returned if xs is empty.

f is a 2-parameter function that takes a new item and a partial
result (what we get from folding all but the first item). It returns
the result we want for the whole list.

2025-03-19 CS 331 Spring 2025 7

Thoughts on Assignment 5
Exercise C [1/3]

In Exercise C, you are to write a stand-alone Haskell program that
inputs numbers and prints their sum.

Your code will need to do some I/O tasks repeatedly, many times.
The most straightforward way to do this is to write a function
that does the I/O and calls itself tail recursively.

Such a function only does things that need to happen repeatedly.
For example, if you need to do X once and then do Y over and
over again, then write:

▪ A function that does Y and calls itself.

▪ A function that does X and then calls the other function.

2025-03-19 CS 331 Spring 2025 8

Thoughts on Assignment 5
Exercise C [2/3]

In an I/O do-block, everything is either

▪ an expression whose value is an I/O action,

▪ the above preceded by “variable <-”, or

▪ “let variable = …”.

You will almost certainly need an if-then-else inside a do-block.
Each branch of the if-then-else must evaluate to an I/O action.

If you have more than one I/O task to perform in one of the
branches, then combine these into a single I/O action, using do.

What if you have nothing to do in one of the branches? You still
must have both branches (in Haskell, the else is not optional).
And each must evaluate to an I/O action. You can create an I/O
action that does nothing by using “return ()”.

See squarenums.hs and bestnum.hs for example code.

2025-03-19 CS 331 Spring 2025 9

Thoughts on Assignment 5
Exercise C [3/3]

We have not covered error checking on I/O and conversion from

String. So your program in Exercise C is not required to be fully
robust—that is, able to deal gracefully with any input.

In other words, your program is allowed to crash if the user types
an illegal value.

2025-03-19 CS 331 Spring 2025 10

2025-03-19 CS 331 Spring 2025

Unit Overview
The Scheme Programming Language

Topics

▪ PL feature: identifiers & values

▪ PL feature: reflection

▪ PL category: Lisp-family PLs

▪ Introduction to Scheme

▪ Scheme: basics

▪ Scheme: evaluation

▪ Scheme: data

▪ Scheme: macros

11

Review

2025-03-19 CS 331 Spring 2025 12

Review
PL Feature: Reflection

Reflection in a computer program refers to the ability of the
program to deal with its own code.

C and C++ offer essentially no support for reflection. Haskell is
similar.

Lisp-family programming languages (Common Lisp, Scheme,
EMACS Lisp, Clojure, Logo, and others) form the gold standard
for reflection support. Code can easily be made available to a
program in the form of an abstract syntax tree, which can be
transformed arbitrarily and then executed.

2025-03-19 CS 331 Spring 2025 13

PL Category: Lisp-Family PLs

2025-03-19 CS 331 Spring 2025 14

PL Category: Lisp-Family PLs
Background [1/4]

In the late 1950s, MIT professor John McCarthy developed a
mathematical formalism for describing computation.

His most important notation was the
Symbolic Expression, or
S-expression. An S-expression is
either an atom (basically a word),
nil (empty pair of parentheses), or a
pair (S-expression dot S-expression in parentheses). Using
pairs, we can construct large S-expressions from small pieces.

(THIS . (IS . (AN . ((S . (EXPRESSION . ())) . ()))))

A shorter form uses a parenthesized list of space-separated items.
Something like “(A . (B . (C . ())))” is written as “(A B C)”.

(THIS IS AN (S EXPRESSION))

2025-03-19 CS 331 Spring 2025

Atom ABC

Nil ()

Pair (??? . ???)

Same as
above

15

PL Category: Lisp-Family PLs
Background [2/4]

Steve Russell, at that time a Dartmouth student, became aware of
McCarthy’s work. He observed that one of the operations of the
formalism—eval—if implemented as a computer program, would
be an interpreter for a programming language.

In 1958, Russell wrote such an implementation in machine
language on an IBM 704. The resulting programming language
became known as Lisp, for LISt Processor.

Lisp and associated PLs are noted for their excellent support for
reflection. Code and data are stored in the same structures
(binary trees representing S-expressions). Modification of
existing code, followed by execution of the modified code, is
common.

2025-03-19 CS 331 Spring 2025 16

PL Category: Lisp-Family PLs
Background [3/4]

Lisp caught on rapidly in the Artificial Intelligence research
community. By the 1970s several dialects were in use.

In the late 1960s, a Lisp dialect called Logo was released. This
was aimed at teaching programming concepts.

The mid-1970s saw the development of EMACS (originally Editor
MACroS), a Lisp-scriptable text editor. A descendant continues
to be actively developed by the GNU project; it is widely used.

Lisp machines, computers aimed at running Lisp, were sold in the
1980s. They are no longer made, but emulators are available.

In 1984, a unified Lisp standard was produced: Common Lisp. An
ANSI standard was published in 1994.

2025-03-19 CS 331 Spring 2025 17

PL Category: Lisp-Family PLs
Background [4/4]

A number of important programming-language concepts had their
first major implementations in Lisp-family PLs: recursion, tree
structures, closures, dynamic typing, higher-order functions,
encapsulated loops like map, filter, and zip, garbage collection,
and REPLs.

Interest in Lisp died down after the 1980s. But Lisp appears to
have enjoyed something of a resurgence in the last couple of
decades.

Of particular interest is Clojure (pronounced “closure”) a Lisp-
family PL for the Java Virtual Machine (JVM). Originally written
by Rich Hickey in 2007, Clojure continues to be actively
developed.

2025-03-19 CS 331 Spring 2025 18

PL Category: Lisp-Family PLs
Typical Characteristics [1/2]

Characteristics of typical Lisp-family PLs:

▪ Simple syntax based on the S-expression. A program is a list or
sequence of lists. The first item of a list is a function (usually
“procedure” in the Lisp world); the rest are its arguments.

For example, (a + 2) * -b in a typical Lisp-family PL:
(* (+ a 2) (- b))

Where have we seen the above format for an expression before?

Tweak the notation. Replace parentheses with braces, separate list
items by commas, and place each atom in double quotes:
{"*", {"+", "a", "2"}, {"-", "b"}}

Q. Where have we seen this before?

A. This was our first stab at an AST representation in Lua.

Lisp source code is a direct representation of its own AST!

2025-03-19 CS 331 Spring 2025 19

PL Category: Lisp-Family PLs
Typical Characteristics [2/2]

Characteristics of typical Lisp-family PLs (cont’d):

▪ Support for reflection is excellent. Source-code syntax and storage
format are those of the PL’s primary data structure. The PL supports
macros: specified code transformations.

▪ Typing is dynamic, implicit, and structural (duck typing).

▪ There is good support for functional programming: functions are
first-class, and higher-order functions are supported.

▪ But Lisp-family PLs are typically not pure;
mutable data is usually allowed.

▪ New constructions can be defined: flow
of control, definitions, etc.

▪ Execution can be interactive (REPL) or
via previously compiled code.

▪ Accomplished Lisp programmers tend
to be insufferably fond of Lisp.
(But maybe they’re onto something.)

2025-03-19 CS 331 Spring 2025

Oh, your favorite
PL has an exciting

new feature? We’ve
been able to to that
in Lisp since 1962.

<smirk>

20

Introduction to Scheme

2025-03-19 CS 331 Spring 2025 21

Introduction to Scheme
History [1/2]

As with many PLs, the early history of Lisp was one of ever-
increasing complexity. As a result, the Common Lisp standard is
huge, including sophisticated exception handling, an object
system, and many other features.

Perhaps as a reaction to this tendency, a Lisp-family PL called
Scheme was created at the MIT AI Lab around 1970, by Guy
Steele and Gerald Sussman.

In contrast to Common Lisp, Scheme follows a minimalist design
philosophy, with a small, simple core and versatile tools for
extending the PL with new constructions.

2025-03-19 CS 331 Spring 2025

Scheme’s minimalism probably will
not be impressive, as Lua is rather
more minimalist. But compared to

Common Lisp, Scheme is tiny.

22

Introduction to Scheme
History [2/2]

Scheme differs from traditional Lisp in a number of significant
ways. Thus, while some say Scheme is a dialect of Lisp, others
emphatically deny this. But Scheme clearly belongs in the Lisp
family of PLs.

Scheme has been standardized in a series of documents: a
standard issued by IEEE in 1991 and a series of reports by the
Scheme Language Steering Committee. The most recent was
released in 2013: the Revised7 Report on the Algorithmic
Language Scheme (R7RS).

In 1994 the Rice University Programming Languages Team
released PLT Scheme. In 2010 this was
renamed Racket. Distributed with Racket
is a simple IDE called DrRacket, which
runs on all major platforms.

2025-03-19 CS 331 Spring 2025

We will use DrRacket,
but not the Racket PL.
DrRacket also supports

standard Scheme.

23

Introduction to Scheme
Characteristics — Introduction

Scheme is a Lisp-family PL with a minimalist design philosophy.

Scheme code consists of parenthesized lists, which may contain
atoms or other lists. List items are separated by space; blanks
and newlines between list items are treated the same.

(define (hello-world)

 (begin

 (display "Hello, world!")

 (newline)

)

)

When a list is evaluated, the value of the first item is usually a
procedure (think “function”); other items are its arguments.

2025-03-19 CS 331 Spring 2025 24

Introduction to Scheme
Characteristics — Type System [1/2]

The type system of Scheme is similar to that of Lua.

▪ Typing is dynamic.

▪ Typing is implicit. Type annotations are generally not used.

▪ Type checking is structural. Duck typing is used.

▪ There is a high level of type safety: operations on invalid types are
not allowed, and implicit type conversions are rare.

▪ There is a fixed set of types.

Lua’s fixed set of types includes only 8 types, while Scheme has
something like 36. We look at some of these next.

2025-03-19 CS 331 Spring 2025 25

Introduction to Scheme
Characteristics — Type System [2/2]

Two heavily used types are pair and null, which are used to
construct lists, as in S-expressions.

Values of all other types are atoms. Here are a few of these:

▪ Booleans. Literals are #t (true) and #f (false).

▪ Strings. Literals use double quotes: "This is a string."

▪ Characters. Here is the 'a' character literal: #\a

▪ Symbols. A symbol is an identifier: abc !@a= a-long-symbol?
In Scheme, symbols are not just names of things; they are things.
In other words, Scheme has first-class identifiers.

▪ Numbers. There are seven number types, including arbitrarily large
integers (like Haskell’s Integer and Python’s int), floating-point
numbers, exact rational numbers, and complex numbers.

▪ Procedures. A procedure is what we would call a first-class
function. A procedure may be bound to a name (a symbol), or it
may be unnamed.

2025-03-19 CS 331 Spring 2025 26

Introduction to Scheme
Characteristics — Flow of Control

Scheme has no special syntax for flow of control.

Here is some Lua code and more or less equivalent Scheme code.

Lua

if x == 3 then

 io.write("three")

else

 io.write("other")

end

Scheme uses the same kind of syntax for flow of control (if),
operators (=), and regular function calls (display). In Lua—and
most other PLs—different syntax is used for these three.

2025-03-19 CS 331 Spring 2025

Scheme

(if (= x 3)

 (display "three")

 (display "other")

)

27

Introduction to Scheme
Characteristics — Miscellaneous

As with Lua, Scheme local variables are lexically scoped. Scheme
globals have dynamic scope.

Scheme has good support for functional programming. It might be
called a functional PL. But it is not a pure functional PL, as it it
does allow for mutable data.

Like all Lisp-family PLs, the syntax and storage format of code is
the same as that of the programming language’s primary data
structure. It is natural to manipulate existing code. Transformed
code can be executed as part of the same program. Thus,
Scheme has excellent support for reflection.

2025-03-19 CS 331 Spring 2025 28

Introduction to Scheme
Build & Execution

The standard filename suffix for Scheme source files is .scm.

Scheme allows for both interactive execution and compilation to a
native code executable file. We will not be doing the latter.

We will execute Scheme using the DrRacket IDE.

▪ The upper part of the DrRacket window, which it calls definitions, is
a source-code editor, with the usual open-save interface. This
semester, the first code line in this part must always be as follows:

#lang scheme

▪ Clicking “Run” executes the code in the editor. Symbols defined in
this code may then be used in the lower part, which is a REPL.

▪ After clicking “Run”, type Scheme code in the REPL to execute it.

2025-03-19 CS 331 Spring 2025 29

Introduction to Scheme
Some Programming [1/2]

TO DO

▪ Try out interactive Scheme in DrRacket.

▪ Write a hello-world program in Scheme and execute it.

2025-03-19 CS 331 Spring 2025

Done. See hello.scm.

30

Introduction to Scheme
Some Programming [2/2]

I have written a Scheme program that computes and prints
Fibonacci numbers: fibo.scm.

TO DO

▪ Run fibo.scm.

2025-03-19 CS 331 Spring 2025

See fibo.scm.

31

	Slide 1: Thoughts on Assignment 5 PL Category: Lisp-Family PLs Introduction to Scheme
	Slide 2
	Slide 3: Thoughts on Assignment 5 Overview
	Slide 4: Thoughts on Assignment 5 Exercise B [1/4]
	Slide 5: Thoughts on Assignment 5 Exercise B [2/4]
	Slide 6: Thoughts on Assignment 5 Exercise B [3/4]
	Slide 7: Thoughts on Assignment 5 Exercise B [4/4]
	Slide 8: Thoughts on Assignment 5 Exercise C [1/3]
	Slide 9: Thoughts on Assignment 5 Exercise C [2/3]
	Slide 10: Thoughts on Assignment 5 Exercise C [3/3]
	Slide 11: Unit Overview The Scheme Programming Language
	Slide 12
	Slide 13: Review PL Feature: Reflection
	Slide 14
	Slide 15: PL Category: Lisp-Family PLs Background [1/4]
	Slide 16: PL Category: Lisp-Family PLs Background [2/4]
	Slide 17: PL Category: Lisp-Family PLs Background [3/4]
	Slide 18: PL Category: Lisp-Family PLs Background [4/4]
	Slide 19: PL Category: Lisp-Family PLs Typical Characteristics [1/2]
	Slide 20: PL Category: Lisp-Family PLs Typical Characteristics [2/2]
	Slide 21
	Slide 22: Introduction to Scheme History [1/2]
	Slide 23: Introduction to Scheme History [2/2]
	Slide 24: Introduction to Scheme Characteristics — Introduction
	Slide 25: Introduction to Scheme Characteristics — Type System [1/2]
	Slide 26: Introduction to Scheme Characteristics — Type System [2/2]
	Slide 27: Introduction to Scheme Characteristics — Flow of Control
	Slide 28: Introduction to Scheme Characteristics — Miscellaneous
	Slide 29: Introduction to Scheme Build & Execution
	Slide 30: Introduction to Scheme Some Programming [1/2]
	Slide 31: Introduction to Scheme Some Programming [2/2]

