
Where Are We?
PL Feature: Identifiers & Values
PL Feature: Reflection

CS 331 Programming Languages

Lecture Slides

Monday, March 17, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell



2025-03-17 CS 331 Spring 2025

Unit Overview
The Haskell Programming Language

Topics

▪ PL feature: type system

▪ PL category: functional PLs

▪ Introduction to Haskell

▪ Haskell: functions

▪ Haskell: lists

▪ Haskell: flow of control

▪ Haskell: I/O

▪ Haskell: data

















2



Where Are We?

2025-03-17 CS 331 Spring 2025 3



2025-03-17 CS 331 Spring 2025

Where Are We?
From the First Day of Class: Course Overview — Goals

Upon successful completion of CS 331, students are expected to:

▪ Understand the concepts of syntax and semantics, and how
syntax can be specified.

▪ Understand, and have experience implementing, basic lexical 
analysis, parsing, and interpretation.

▪ Understand the various kinds of programming languages and
the primary ways in which they differ.

▪ Understand standard programming language features and
the forms these take in different programming languages.

▪ Be familiar with the impact (local, global, etc.) that choice of 
programming language has on programmers and users.

▪ Have a basic programming proficiency in multiple
significantly different programming languages.

4



2025-03-17 CS 331 Spring 2025

Where Are We?
From the First Day of Class: Course Overview — Topics

The course material will be divided into eight units:

1. Formal Languages & Grammars

2. The Lua Programming Language

▪ PL Feature: Compilation & Interpretation

3. Lexing & Parsing

4. The Haskell Programming Language

▪ PL Feature: Type System

5. The Scheme Programming Language

▪ PL Feature: Identifiers & Values

▪ PL Feature: Reflection

6. Semantics & Interpretation

7. The Prolog Programming Language

▪ PL Feature: Execution Model

8. Student Presentations on Programming Languages

Track 1: Syntax & 
Semantics of PLs.

Track 2: PL features & 
categories, specific PLs.

We are 
here.

5



2025-03-17 CS 331 Spring 2025

Unit Overview
The Scheme Programming Language

Our fifth unit: The Scheme Programming Language.

Topics

▪ PL feature: identifiers & values

▪ PL feature: reflection

▪ PL category: Lisp-family PLs

▪ Introduction to Scheme

▪ Scheme: basics

▪ Scheme: evaluation

▪ Scheme: data

▪ Scheme: macros

After this we will cover Semantics & Interpretation.

6



PL Feature: Identifiers & Values

2025-03-17 CS 331 Spring 2025 7



PL Feature: Identifiers & Values
Identifiers

An identifier is the name of
something in source code.

Every identifier lies in some namespace.

Overloading: when a single name in a single namespace refers to 
two (or more) different entities.

The code from which an identifier is accessible forms the 
identifier’s scope.

Static scope: scope is determined before runtime.

This is typically lexical scope: the scope consists of a fixed 
portion of the program’s source code.

Dynamic scope: scope is determined at runtime.

2025-03-17 CS 331 Spring 2025

These slides are an incomplete 
summary of the reading

“Identifiers, Values, and Variables”. 

8



PL Feature: Identifiers & Values
Values [1/2]

A value might be a number or a string or a Boolean or some kind 
of object.

An expression is an entity that has a value.

A literal is a representation of a fixed value in source code. The 
value itself is represented, not an identifier bound to the value, 
and not a computation whose result is the value.

2025-03-17 CS 331 Spring 2025

C++ Literals

Literal Type

42 int

42.5 double

false bool

'A' char

"zebra" char[]

Lua Literals

Literal Type

42.5 number

false boolean

"zebra" string

[=[xy]=] string

{ 1, 2 } table

9



PL Feature: Identifiers & Values
Values [2/2]

When a value comes into existence, we say it is constructed. 

A value continues to exist until it is destroyed.

The time between construction and destruction of a value is the 
value’s lifetime, that is, the period during which the value 
exists. 

2025-03-17 CS 331 Spring 2025 10



PL Feature: Identifiers & Values
Variables

A variable is an identifier than can be associated with a value. 
Making this association is called binding: a variable is bound to 
a value.

A variable that is not bound within an expression is said to be free 
in that expression.

Remember:

▪ An identifier has a scope.

▪ A value has a lifetime.

Because a bound variable involves both an identifier and a value, 
scope and lifetime are both applicable.

2025-03-17 CS 331 Spring 2025 11



PL Feature: Identifiers & Values
Implementation [1/2]

At runtime, a value might be implemented as a block of memory 
large enough to hold its internal representation.

When a value is set, it is computed, and its representation is 
stored in the memory block. 

// C++

int n = …;

But what if we are evaluation is lazy?

2025-03-17 CS 331 Spring 2025

37

nMemory

The right-hand side is evaluated. Say the 
result is 37. This is stored in the memory 
location for variable n.

12



PL Feature: Identifiers & Values
Implementation [2/2]

-- Haskell

n = …

With lazy evaluation, an unevaluated value usually holds a thunk: 
a reference to code whose execution computes the value.

As we have seen, use of thunks allows for infinite data structures.

2025-03-17 CS 331 Spring 2025

Thunk

nMemory

37

nMemory

Value is needed 
for the first time

13



PL Feature: Reflection

2025-03-17 CS 331 Spring 2025 14



PL Feature: Reflection
What It Is

Reflection in a computer program
refers to the ability of the program
to deal with its own code: examining
the code, looking at its properties,
possibly modifying it, and executing the modified code.

In practice, reflection is largely a matter of support from the 
programming language and associated runtime environment. 
Thus, an important property of a programming language is 
whether, and how well, it supports reflection.

2025-03-17 CS 331 Spring 2025

These slides are an incomplete 
summary of the reading

“Reflection in Programming”. 

15



PL Feature: Reflection
Support in Programming Languages [1/2]

Machine code usually supports reflection, in the form of self-
modifying code. Today, this is generally frowned on in 
production software development.

Early high-level programming languages mostly did not support 
reflection at all, the major exception being Lisp (late 1950s). 
More on Lisp soon. C and C++ offer essentially no support for 
reflection. Haskell is similar.

Reflection was first named and studied in the early 1980s. Since 
then, various programming languages have included some 
support for reflection—often in very limited ways.

2025-03-17 CS 331 Spring 2025 16



PL Feature: Reflection
Support in Programming Languages [2/2]

Dynamic PLs can have limited reflection support. For example, Lua 
“classes” and “objects” can be examined at runtime. All 
members can be found, along with their types and metatables 
(if any). Members can be added and removed.

Lisp has evolved into a family of programming languages: 
Common Lisp, Scheme, EMACS Lisp, Clojure, Logo, and others. 
These form the gold standard for reflection support.

In Lisp-family PLs, executable code can be made available to a 
program in the form of an abstract syntax tree, which can be 
transformed arbitrarily and then executed.

Writing code transformations is a normal part of Lisp 
programming; in some Lisp-family PLs, constructs called 
macros make such transformations convenient.

2025-03-17 CS 331 Spring 2025 17



PL Feature: Reflection
Example

We will shortly study a programming language called Scheme. As 
a Lisp-family programming language, Scheme offers excellent 
support for reflection.

TO DO

▪ Look at an example of reflection in Scheme.

2025-03-17 CS 331 Spring 2025

See reflect.scm.

18


	Slide 1: Where Are We? PL Feature: Identifiers & Values PL Feature: Reflection
	Slide 2: Unit Overview The Haskell Programming Language
	Slide 3
	Slide 4: Where Are We? From the First Day of Class: Course Overview — Goals
	Slide 5: Where Are We? From the First Day of Class: Course Overview — Topics
	Slide 6: Unit Overview The Scheme Programming Language
	Slide 7
	Slide 8: PL Feature: Identifiers & Values Identifiers
	Slide 9: PL Feature: Identifiers & Values Values [1/2]
	Slide 10: PL Feature: Identifiers & Values Values [2/2]
	Slide 11: PL Feature: Identifiers & Values Variables
	Slide 12: PL Feature: Identifiers & Values Implementation [1/2]
	Slide 13: PL Feature: Identifiers & Values Implementation [2/2]
	Slide 14
	Slide 15: PL Feature: Reflection What It Is
	Slide 16: PL Feature: Reflection Support in Programming Languages [1/2]
	Slide 17: PL Feature: Reflection Support in Programming Languages [2/2]
	Slide 18: PL Feature: Reflection Example

