
Haskell: I/O

CS 331 Programming Languages

Lecture Slides

Friday, February 28, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-02-28 CS 331 Spring 2025

Unit Overview
The Haskell Programming Language

Topics

▪ PL feature: type system

▪ PL category: functional PLs

▪ Introduction to Haskell

▪ Haskell: functions

▪ Haskell: lists

▪ Haskell: flow of control

▪ Haskell: I/O

▪ Haskell: data

2

Review

2025-02-28 CS 331 Spring 2025 3

Review
Haskell: Flow of Control [1/2]

Flow of control refers to the ways a PL determines what code is
executed.

For example, flow of control in Lua includes:

▪ Selection (if … elseif … else).

▪ Iteration (for … =, for … in, while, repeat … until).

▪ Function calls.

▪ Coroutines.

▪ Exceptions.

Haskell has very different flow-of-control facilities from most PLs
that are oriented toward imperative programming.

2025-02-28 CS 331 Spring 2025

For code from this topic,
see flow.hs.

4

Review
Haskell: Flow of Control [2/2]

We will look at a flow-of-control structure called a do-expression
when we study Haskell I/O. An example:

reverseIt = do

 putStr "Type something: "

 hFlush stdout -- Requires import System.IO

 line <- getLine

 putStr "What you typed, reversed: "

 putStrLn (reverse line)

When a program returns this expression’s value, this happens:

> reverseIt

Type something: Howdy!

What you typed, reversed: !ydwoH

2025-02-28 CS 331 Spring 2025

Typed by user

5

Haskell: I/O

2025-02-28 CS 331 Spring 2025 6

Haskell: I/O
String Conversion — Introduction [1/2]

In many PLs, conversion to & from string is mixed up together with
I/O. This makes sense, because when we do text I/O, the values
we send and receive must, in the end, be composed of
characters.

Some examples are shown below. In each, n is an integer variable.
Each statement will first convert n to a string, then write this
string to the standard output.

printf("%d", n); /* C */

cout << n; // C++

System.out.print(n); // Java

fmt.Print(n) // Go

print n # Ruby

io.write(n) -- Lua

2025-02-28 CS 331 Spring 2025

For code from this topic,
see io.hs.

7

Haskell: I/O
String Conversion — Introduction [2/2]

But Haskell keeps string conversion and I/O mostly separate.

nstr = show n -- Convert n to a string

putStr nstr -- Print the string

putStr $ show n -- Do both

We briefly cover Haskell’s string-conversion facilities.

Then we look at Haskell I/O.

2025-02-28 CS 331 Spring 2025

The $ operator does function application,
but it is low precedence (0) and right-
associative. So this line is the same as
“putStr (show n)”.

To be clear: there is no rule in Haskell that
string conversion and I/O must be separated.

You can write a function that does both.
However, the two are mostly handled via

different types and constructions.

8

Haskell: I/O
String Conversion — Typeclasses [1/2]

A Haskell typeclass (or simply class) is a collection of types that
all implement some particular interface.

Some standard typeclasses:

▪ Eq: Equality-comparable types. Every type in class Eq has the ==
and /= (inequality) operators defined.

▪ Ord: Orderable types. Every type in class Ord has the various
ordered comparison operators defined: <, <=, >, >=.

▪ Num: Numeric types. Every type in class Num has the binary +, -
and * operators, along with other things like abs (absolute value).

Haskell does overloading only via typeclasses.

For example, the types in class Eq are the
only types for which == is defined.

2025-02-28 CS 331 Spring 2025

This is what is behind our
claim that it is difficult to

place Haskell’s type
checking on the

nominal/structural axis.

9

Haskell: I/O
String Conversion — Typeclasses [2/2]

We have seen typeclasses before in contexts like the following
Haskell type annotation.

blug :: (Eq a, Num a) => a -> a -> Bool

The above says that blug is a function that takes 2 parameters of
type a and returns Bool, where a can be any numeric type (class
Num) that is equality-comparable (class Eq).

Two standard typeclasses related to string conversion:

▪ Show: Showable types. Every type in class Show has conversion to
String using the overloaded function show.

▪ Read: Readable types. Every type in class Read has conversion
from String using the overloaded function read.

2025-02-28 CS 331 Spring 2025 10

Haskell: I/O
String Conversion — show

To convert a value of a showable type to a String, pass it to show.

> show 3

"3"

> show [True, False]

"[True,False]"

Not all types are showable.

> square x = x*x

> show square

[Error]

2025-02-28 CS 331 Spring 2025 11

Haskell: I/O
String Conversion — read [1/2]

To convert a String to a readable type, pass the String to read.

> fivestr = "5"

> 2 + read fivestr

7

Type annotations are sometimes needed.

> read fivestr -- Convert String to ... what?

[Error]

> (read fivestr)::Integer

5

> (read fivestr)::Double

5.0

2025-02-28 CS 331 Spring 2025

Do you see why no type
annotation is needed
here?

12

Haskell: I/O
String Conversion — read [2/2]

> (read fivestr)::Integer

5

> (read fivestr)::Double

5.0

The above illustrates a noteworthy feature of Haskell.

Both Haskell and C++ support function overloading: creating
distinct functions with the same name in the same namespace.

In C++ we can overload on the number and types of parameters;
we must be able to choose which function to use based only on
the number and types of the parameters.

But in Haskell, we can also overload on the return type. There are
various versions of function read; all have the same name, and
all take a single String parameter. But they have different
return types; Haskell can determine which to use based on this.

2025-02-28 CS 331 Spring 2025 13

Haskell: I/O
Simple Output [1/4]

I/O would seem to involve side effects—which Haskell forbids.

We do I/O in Haskell as follows: a program’s return value includes
a description of the side effects the program would like to do.
The runtime environment performs the side effects.

A side effect description is stored in a Haskell I/O action.

For example, here is function putStr.

> :t putStr

putStr :: String -> IO ()

Function putStr takes a String and returns an I/O action
representing printing the String to the standard output.

2025-02-28 CS 331 Spring 2025

Return type: I/O action

14

Haskell: I/O
Simple Output [2/4]

When an expression whose value is an I/O action is entered at the
GHCi prompt, the I/O is performed.

> putStrLn "Hello!"

Hello!

> putStrLn $ show $ map (\ x -> x*x) [1, 2, 3]

[1,4,9]

In a complete program, main needs to return an I/O action. Here is
a Haskell hello-world program.

main = putStrLn "Hello, world!"

2025-02-28 CS 331 Spring 2025

Like putStr, but add a newline
at the end of the given String.

15

Haskell: I/O
Simple Output [3/4]

The >> operator combines two I/O actions into one I/O action,
which describes the side effects of both.

> putStr "Hello" >> putStrLn " there!"

Hello there!

Chain them to combine three or more I/O actions into one.

x = putStr "I have " >> putStr (show (73*94*82))

 >> putStrLn " hamsters."

 >> putStrLn "(Not really.)"

> x

I have 562684 hamsters.

(Not really.)

2025-02-28 CS 331 Spring 2025

We will eventually discuss a nicer way to
combine I/O actions. But when we use it,
this is what is going on under the hood.

16

Haskell: I/O
Simple Output [4/4]

TO DO

▪ Write code that does numerical computations and outputs the
results. Values stored in variables and/or passed to functions need
to be numbers.

▪ Now do the same thing, but let the values stored in variables and/or
passed to functions be I/O actions.

2025-02-28 CS 331 Spring 2025

Done. See io.hs.

17

Haskell: I/O
I/O Actions [1/3]

Here is a more complete explanation of an I/O action. It includes:

▪ a description of a sequence of zero or more side effects, and

▪ a wrapped value.

I illustrate the above as follows.

2025-02-28 CS 331 Spring 2025

Actually a wrapped potential value. Due to laziness,
the wrapped value is not evaluated until the I/O action
is returned from the program. But we will not need to
worry much about this distinction.

I/O Action

Description of sequence
of side effects

Wrapped (potential) value

An I/O action is a black
box. We cannot look inside

and see what is there.
(But we can talk about it.)

18

Haskell: I/O
I/O Actions [2/3]

Recall the “()” in the type of putStr.

> :t putStr

putStr :: String -> IO ()

“()” means that the I/O action returned by putStr wraps a
“nothing” value.

2025-02-28 CS 331 Spring 2025

()

Print String Description of side effect:
print a String

Wrapped “nothing” value

I/O Action
returned by putStr

19

Haskell: I/O
I/O Actions [3/3]

There are various ways to combine multiple I/O actions into a
single I/O action. In all cases, the resulting I/O action has:

▪ A description of all side effects from the combined I/O actions.

▪ The wrapped value from the last of the combined I/O actions.

In particular, the >> operator works this way.

2025-02-28 CS 331 Spring 2025

All side effects

Last wrapped value

+ + + +

20

Haskell: I/O
Simple Input [1/5]

When we do input, we use an I/O action that wraps the value we
are inputting.

> :t getLine

getLine :: IO String

getLine returns an I/O action whose described
side effect is inputting a line of text from the
standard input. The wrapped value is a
String representing the line of text, without
the ending newline.

Now, how do we access the wrapped String?

2025-02-28 CS 331 Spring 2025

The returned I/O action
wraps a String.

String:
line of input

Input a line

I/O Action
returned by
getLine

21

Haskell: I/O
Simple Input [2/5]

The >>= operator has two operands:

▪ an I/O action wrapping a value, and

▪ a function that takes such a value and
returns an I/O action.

The wrapped value is
passed to the function,
which returns an I/O
action.

The two I/O actions are
combined as before: side
effects of both, wrapped value of last.

2025-02-28 CS 331 Spring 2025

Function

+ Function

The function takes one of
these and returns an I/O
action.

22

Haskell: I/O
Simple Input [3/5]

For example, getLine returns an I/O action wrapping a String.
Function putStrLn takes a String and returns an I/O action.
Put these two together with the >>= operator.

> getLine >>= putStrLn

Howdy!

Howdy!

2025-02-28 CS 331 Spring 2025

Typed by user

We cannot pull a wrapped
value out of an I/O action.
Instead, we push functions
into an I/O action, and pass
the wrapped values to them.

putStrLn

I/O action returned
by getLine

Input a line

String:
line of input

Print String

String:
line of input

Input a line Print String

()

()

I/O action returned
by putStrLn

23

Haskell: I/O
Simple Input [4/5]

The >> and >>= operators can be used together:

> (putStr "Type something: " >> getLine) >>= putStrLn

Type something: I like hamsters!

I like hamsters!

We can give the parameter of putStrLn a name:

> getLine >>= (\ line -> putStrLn line)

Hamsters rule ...

Hamsters rule ...

> getLine >>= (\ line -> putStrLn (reverse line))

... this planet and others like it.

.ti ekil srehto dna tenalp siht ...

2025-02-28 CS 331 Spring 2025

Parentheses are actually unnecessary.
The >> and >>= operators have equal
precedence and are both left-associative.

Same as putStrLn
(right?)

24

Haskell: I/O
Simple Input [5/5]

TO DO

▪ Write some code that does input, and then does output based on
this input.

Next: the nicer way to combine I/O actions.

2025-02-28 CS 331 Spring 2025

Done. See io.hs.

25

Haskell: I/O
TO BE CONTINUED …

Haskell: I/O will be continued next time.

2025-02-28 CS 331 Spring 2025 26

	Slide 1: Haskell: I/O
	Slide 2: Unit Overview The Haskell Programming Language
	Slide 3
	Slide 4: Review Haskell: Flow of Control [1/2]
	Slide 5: Review Haskell: Flow of Control [2/2]
	Slide 6
	Slide 7: Haskell: I/O String Conversion — Introduction [1/2]
	Slide 8: Haskell: I/O String Conversion — Introduction [2/2]
	Slide 9: Haskell: I/O String Conversion — Typeclasses [1/2]
	Slide 10: Haskell: I/O String Conversion — Typeclasses [2/2]
	Slide 11: Haskell: I/O String Conversion — show
	Slide 12: Haskell: I/O String Conversion — read [1/2]
	Slide 13: Haskell: I/O String Conversion — read [2/2]
	Slide 14: Haskell: I/O Simple Output [1/4]
	Slide 15: Haskell: I/O Simple Output [2/4]
	Slide 16: Haskell: I/O Simple Output [3/4]
	Slide 17: Haskell: I/O Simple Output [4/4]
	Slide 18: Haskell: I/O I/O Actions [1/3]
	Slide 19: Haskell: I/O I/O Actions [2/3]
	Slide 20: Haskell: I/O I/O Actions [3/3]
	Slide 21: Haskell: I/O Simple Input [1/5]
	Slide 22: Haskell: I/O Simple Input [2/5]
	Slide 23: Haskell: I/O Simple Input [3/5]
	Slide 24: Haskell: I/O Simple Input [4/5]
	Slide 25: Haskell: I/O Simple Input [5/5]
	Slide 26: Haskell: I/O TO BE CONTINUED …

