
Haskell: Flow of Control

CS 331 Programming Languages

Lecture Slides

Wednesday, February 26, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-02-26 CS 331 Spring 2025

Unit Overview
The Haskell Programming Language

Topics

▪ PL feature: type system

▪ PL category: functional PLs

▪ Introduction to Haskell

▪ Haskell: functions

▪ Haskell: lists

▪ Haskell: flow of control

▪ Haskell: I/O

▪ Haskell: data

2

Review

2025-02-26 CS 331 Spring 2025 3

Review
Haskell: Functions

Haskell identifiers begin with a letter or underscore, and contain
only letters, underscores, digits, and single quotes (').

Haskell has two kinds of identifiers.

▪ Normal identifiers begin with a lower-case letter or underscore.
These name variables—including functions.

▪ Special identifiers begin with an UPPER-CASE letter. These name
modules, types, and constructors. This is not merely a convention!

myVariable -- Normal

_my_Function'_33 -- Normal

MyModule -- Special

2025-02-26 CS 331 Spring 2025

For code from this topic,
see func.hs.

4

Review
Haskell: Lists [1/2]

isEmpty [] = True

isEmpty (x:xs) = False

DONE

▪ Write a function myMap that does the same thing as map.

▪ Write a function myFilter that does the same things as filter.

A predicate is a function that returns a Boolean value.

A useful construction: if COND then EXPR1 else EXPR2.

▪ COND is an expression of type Bool. If it is True, then EXPR1 is
returned. If it is False, then EXPR2 is returned.

▪ Expressions EXPR1 and EXPR2 must have the same type.

2025-02-26 CS 331 Spring 2025

Cons: construct a list from its first item and a list of the
rest of its items. In Haskell, infix colon (:) operator.

A pattern that matches any nonempty list.
Parentheses are necessary due to precedence.

For code from this topic,
see list.hs.

5

Review
Haskell: Lists [2/2]

Lists can be dealt recursively. Base case: empty list. Recursive
case: nonempty list—do a computation with the head (first
item); make a recursive call on the tail (list of all other items).

Sometimes other kinds of recursion are used.

DONE

▪ Write a function lookInd that does item lookup by index (zero-
based) in a list.

Useful

▪ The pattern “_” matches any single entity but cannot be used in the
right-hand side of a definition. So it means unused value.

▪ error is an overloaded function that takes a String and returns
any type at all. When it executes, it crashes, printing an error
message, which will include the given String.

▪ undefined is like error, but it takes no arguments.

2025-02-26 CS 331 Spring 2025

See list.hs.

6

Haskell: Flow of Control

2025-02-26 CS 331 Spring 2025 7

Haskell: Flow of Control
Introduction

Flow of control refers to the ways a PL determines what code is
executed.

For example, flow of control in Lua includes:

▪ Selection (if … elseif … else).

▪ Iteration (for … =, for … in, while, repeat … until).

▪ Function calls.

▪ Coroutines.

▪ Exceptions.

Haskell has very different flow-of-control facilities from PLs that are
oriented toward imperative programming.

2025-02-26 CS 331 Spring 2025

For code from this topic,
see flow.hs.

8

Haskell: Flow of Control
Pattern Matching, Recursion, Lazy Evaluation [1/5]

We have seen that Haskell has a pattern matching facility, which
allows us to choose one of a number of function definitions. The
rule is that the first definition with a matching pattern is used.

isEmpty [] = True

isEmpty (_:_) = False

-- sfibo: SLOW Fibonacci

sfibo 0 = 0

sfibo 1 = 1

sfibo n = sfibo (n-2) + sfibo (n-1)

In many of the places we would use an if … else construction in
other PLs, we can use pattern matching in Haskell.

2025-02-26 CS 331 Spring 2025 9

Haskell: Flow of Control
Pattern Matching, Recursion, Lazy Evaluation [2/5]

Haskell also makes heavy use of recursion.

lookInd 0 (x:_) = x

lookInd n (_:xs) = lookInd (n-1) xs

lookInd _ [] = error "lookInd: index out of range"

In places where we would use a loop in an imperative PL, we use
recursion in Haskell.

Recursion can be less costly in Haskell than in PLs like C++,
because of Haskell’s required tail-call optimization (TCO).
TCO means that a tail call does not use additional stack space.

2025-02-26 CS 331 Spring 2025 10

Haskell: Flow of Control
Pattern Matching, Recursion, Lazy Evaluation [3/5]

By default, Haskell does lazy evaluation.

We have seen that this allows for infinite lists. There is syntax for
constructing these (involving “..”), but we can actually make
infinite lists without using this syntax. How? Here is an idea.

-- listFrom n

-- Returns the infinite list [n, n+1, n+2, ...].

listFrom n = n:listFrom (n+1)

Is the above code acceptable? It does recursion with no base case.

But this is not a problem, thanks to lazy evaluation. A recursive
call is only made if list items are needed. Using only a finite
number of list items guarantees that the recursion terminates.

2025-02-26 CS 331 Spring 2025 11

Haskell: Flow of Control
Pattern Matching, Recursion, Lazy Evaluation [4/5]

Something else we can do: write our own if … else, as a function.

-- myIf condition tVal fVal

-- Returns tVal if condition is True, fVal otherwise.

myIf True tVal _ = tVal

myIf False _ fVal = fVal

Thanks to lazy evaluation, no more than one of tVal, fVal is ever
evaluated. So myIf is efficient.

Here is the slow Fibonacci algorithm using myIf.

sfibo' n = myIf (n <= 1) n (sfibo' (n-2) + sfibo' (n-1))

2025-02-26 CS 331 Spring 2025 12

Haskell: Flow of Control
Pattern Matching, Recursion, Lazy Evaluation [5/5]

And here is a reimplementation of myFilter, using myIf.

myFilter' p [] = []

myFilter' p (x:xs) = myIf (p x) (x:rest) rest where

 rest = myFilter' p xs

It turns out that the combination of pattern matching, recursion,
and lazy evaluation, together with function calls, are all we
need. We can build any flow-of-control construct out of these—
as long as the construct does not require eager evaluation.

However, Haskell has other flow-of-control facilities, for
convenience. Next we look at a few of these.

2025-02-26 CS 331 Spring 2025 13

Haskell: Flow of Control
Selection — Introduction

Selection refers to flow-of-control constructs that allow us to
choose one of multiple options to execute.

Selection constructions in C++ include if … else, switch, and
virtual function dispatch.

In Haskell, pattern matching works as a selection mechanism.
Other selection constructions include if … then … else,
guards (covered shortly), and a case construction (not
covered).

2025-02-26 CS 331 Spring 2025 14

Haskell: Flow of Control
Selection — if … then … else

We have seen Haskell’s if … then … else construction. This is
much like our myIf.

myIf condition tVal fVal

if condition then tVal else fVal -- Same as above

Some people consider if … then … else to be un-Haskell-ish. I
have found it natural to use when doing I/O (discussed at
another time); otherwise, I generally prefer to use guards.

2025-02-26 CS 331 Spring 2025 15

Haskell: Flow of Control
Selection — Guards [1/3]

Guards are the Haskell equivalent of mathematical notation like
the following.

𝑚𝑦𝐴𝑏𝑠 𝑥 = ቊ
𝑥, if 𝑥 ≥ 0;
−𝑥, otherwise.

In Haskell:

myAbs x

 | x >= 0 = x

 | otherwise = -x

We can use guards in situations that pattern matching cannot
handle. For example, there is no pattern that matches only
nonnegative numbers.

2025-02-26 CS 331 Spring 2025 16

Haskell: Flow of Control
Selection — Guards [2/3]

myAbs x

 | x >= 0 = x

 | otherwise = -x

Note that there is no equals sign after the first line above.

Each vertical bar is followed by a Boolean expression. The first
True expression tells which value is used.

To handle all remaining cases, we could use “True” as our final
expression. “otherwise” is a variable with value True.

Here is the slow Fibonacci algorithm reimplemented using guards.

sfibo'' n

 | n <= 1 = n

 | otherwise = sfibo'' (n-2) + sfibo'' (n-1)

2025-02-26 CS 331 Spring 2025 17

Haskell: Flow of Control
Selection — Guards [3/3]

Here is myFilter reimplemented using guards.

myFilter'' p [] = []

myFilter'' p (x:xs)

 | p x = x:rest

 | otherwise = rest where

 rest = myFilter'' p xs

2025-02-26 CS 331 Spring 2025 18

Haskell: Flow of Control
Error Handling

We have seen Haskell’s fatal-error facilities: error and undefined.

lookInd 0 (x:xs) = x

lookInd n (x:xs) = lookInd (n-1) xs

lookInd _ [] = error "lookInd: index out of range"

We use these in situations when a program needs to crash because
it has detected a bug in its code. It crashes with an explanatory
message, so that a developer can fix the bug.

Haskell has an exception-catching
mechanism, for dealing with error
conditions that may be handled at
runtime. We will not cover this.

2025-02-26 CS 331 Spring 2025

If you look into Haskell exceptions,
then be aware that the Haskell

Standard Library and documentation
toss around “error” and “exception”
rather loosely. Sometimes the terms

are used in inconsistent ways.

19

Haskell: Flow of Control
Encapsulated Loops — Introduction

A very important idea in functional programming:

 Many flow-of-control constructs can be encapsulated as
functions.

We have already done this with if ... else, in the form of function
myIf. Next we look at four ways to encapsulate loops:

▪ map

▪ filter

▪ zip

▪ Fold operations

2025-02-26 CS 331 Spring 2025 20

Haskell: Flow of Control
Encapsulated Loops — map & filter [1/3]

Consider the following C++ code. v is a vector<int>.

vector<int> w;

for (auto n : v)

{

 w.push_back(n % 3);

}

The same computation in Haskell is done without a loop.

w = map (\ n -> n `mod` 3) v

w = [n `mod` 3 | n <- v] -- Alternate form, using a

 -- list comprehension

2025-02-26 CS 331 Spring 2025 21

Haskell: Flow of Control
Encapsulated Loops — map & filter [2/3]

Another C++ snippet:

vector<int> w;

for (auto n : v)

{

 if (n > 6)

 w.push_back(n);

}

And the equivalent Haskell:

w = filter (> 6) v

w = [n | n <- v, n > 6] -- Alternate form, using a

 -- list comprehension

2025-02-26 CS 331 Spring 2025

A nice syntax that can be used with
any infix binary operator, turning it
into a function with one argument.

22

Haskell: Flow of Control
Encapsulated Loops — map & filter [3/3]

So Haskell’s map and filter functions—or the equivalent list
comprehensions—perform operations that we would write as
loops in other PLs.

In particular, map and filter encapsulate loops that process a
sequence of values, constructing another sequence of values.

2025-02-26 CS 331 Spring 2025 23

Haskell: Flow of Control
Encapsulated Loops — zip

Haskell has functions that encapsulate other kinds of loops. For
example, zip takes two lists and returns a list of 2-item tuples.

> zip [8,3,7] "sun"

[(8,'s'),(3,'u'),(7,'n')]

zip stops when either of the given lists runs out.

> zip [8,3,7,4] "sunshine"

[(8,'s'),(3,'u'),(7,'n'),(4,'s')]

2025-02-26 CS 331 Spring 2025 24

Haskell: Flow of Control
Encapsulated Loops — Fold Operations [1/3]

Yet another kind of loop involves processing a sequence of values
and returning a single value. The result might be the sum of all
the numbers in the sequence, the greatest value in the
sequence, etc. The operation performed by a loop like this is
called a fold (or sometimes reduce).

Here is an example of something that is conceptually a fold
operation, implemented in a traditional manner in C++.

int result = 0; // Will hold sum of items in v

for (auto n : v)

{

 result += n;

}

2025-02-26 CS 331 Spring 2025 25

Haskell: Flow of Control
Encapsulated Loops — Fold Operations [2/3]

Haskell has a number of fold functions. These include foldl,
foldr, foldl1, and foldr1 (the “l” and “r” stand for “left” and

“right”).

Below, I show a call to each function, with a comment showing
what the call computes.

foldl (+) 0 [1,2,3,4] -- (((0+1)+2)+3)+4

foldr (+) 0 [1,2,3,4] -- 1+(2+(3+(4+0)))

foldl1 (+) [1,2,3,4] -- ((1+2)+3)+4

foldr1 (+) [1,2,3,4] -- 1+(2+(3+4))

2025-02-26 CS 331 Spring 2025 26

Haskell: Flow of Control
Encapsulated Loops — Fold Operations [3/3]

Here are more practical examples of Haskell folds.

> commafy str1 str2 = str1 ++ ", " ++ str2

> foldr1 commafy ["parsley","sage","rosemary","thyme"]

"parsley, sage, rosemary, thyme"

> bigger a b = if (b > a) then b else a

> maxVal list = foldr1 bigger list

> maxVal [5,2,7,3,9,8,4,9,2,1]

9

2025-02-26 CS 331 Spring 2025 27

Haskell: Flow of Control
Other — seq [1/2]

seq is a primitive function that acts almost as if it is defined as:

seq x y = y

Except that the first argument (x above) is always evaluated.

seq is the unique Haskell primitive that breaks the lazy-evaluation
rule. It evaluates something whose value may not be needed.

Why use seq? To control evaluation. Sometimes we can improve

resource usage (time, stack space). See the next slide.

2025-02-26 CS 331 Spring 2025

You will not need to
use seq in this class. It
is rarely used directly.

28

Haskell: Flow of Control
Other — seq [2/2]

Our listLength can crash with stack overflow for large lists.

> listLength [1..50000000]

*** Exception: stack overflow

But we can fix this as follows:

1. Make the function tail-recursive.

2. Use seq to prevent the construction of increasingly complex
unevaluated expressions.

2025-02-26 CS 331 Spring 2025

For details, see flow.hs.

You will not need to
use seq in this class. It
is rarely used directly.

29

Haskell: Flow of Control
Other — Do-Expression [1/2]

A final flow-of-control structure, which we will look at when we
study Haskell I/O, is the do-expression. An example:

reverseIt = do

 putStr "Type something: "

 hFlush stdout -- Requires import System.IO

 line <- getLine

 putStr "What you typed, reversed: "

 putStrLn (reverse line)

When a program returns this expression’s value, this happens:

> reverseIt

Type something: Howdy!

What you typed, reversed: !ydwoH

2025-02-26 CS 331 Spring 2025

Typed by user

30

Haskell: Flow of Control
Other — Do-Expression [2/2]

reverseIt = do

 putStr "Type something: "

 hFlush stdout -- Requires import System.IO

 line <- getLine

 putStr "What you typed, reversed: "

 putStrLn (reverse line)

A do-expression is syntactic sugar around a pipeline of functions.
Roughly, each function takes the current state and returns it,
possibly modified by an I/O action. Each of the lines above,
except the first line, represents an I/O action.

More on this in our next topic: Haskell I/O.

2025-02-26 CS 331 Spring 2025 31

	Slide 1: Haskell: Flow of Control
	Slide 2: Unit Overview The Haskell Programming Language
	Slide 3
	Slide 4: Review Haskell: Functions
	Slide 5: Review Haskell: Lists [1/2]
	Slide 6: Review Haskell: Lists [2/2]
	Slide 7
	Slide 8: Haskell: Flow of Control Introduction
	Slide 9: Haskell: Flow of Control Pattern Matching, Recursion, Lazy Evaluation [1/5]
	Slide 10: Haskell: Flow of Control Pattern Matching, Recursion, Lazy Evaluation [2/5]
	Slide 11: Haskell: Flow of Control Pattern Matching, Recursion, Lazy Evaluation [3/5]
	Slide 12: Haskell: Flow of Control Pattern Matching, Recursion, Lazy Evaluation [4/5]
	Slide 13: Haskell: Flow of Control Pattern Matching, Recursion, Lazy Evaluation [5/5]
	Slide 14: Haskell: Flow of Control Selection — Introduction
	Slide 15: Haskell: Flow of Control Selection — if … then … else
	Slide 16: Haskell: Flow of Control Selection — Guards [1/3]
	Slide 17: Haskell: Flow of Control Selection — Guards [2/3]
	Slide 18: Haskell: Flow of Control Selection — Guards [3/3]
	Slide 19: Haskell: Flow of Control Error Handling
	Slide 20: Haskell: Flow of Control Encapsulated Loops — Introduction
	Slide 21: Haskell: Flow of Control Encapsulated Loops — map & filter [1/3]
	Slide 22: Haskell: Flow of Control Encapsulated Loops — map & filter [2/3]
	Slide 23: Haskell: Flow of Control Encapsulated Loops — map & filter [3/3]
	Slide 24: Haskell: Flow of Control Encapsulated Loops — zip
	Slide 25: Haskell: Flow of Control Encapsulated Loops — Fold Operations [1/3]
	Slide 26: Haskell: Flow of Control Encapsulated Loops — Fold Operations [2/3]
	Slide 27: Haskell: Flow of Control Encapsulated Loops — Fold Operations [3/3]
	Slide 28: Haskell: Flow of Control Other — seq [1/2]
	Slide 29: Haskell: Flow of Control Other — seq [2/2]
	Slide 30: Haskell: Flow of Control Other — Do-Expression [1/2]
	Slide 31: Haskell: Flow of Control Other — Do-Expression [2/2]

